
Wavelet-Based Time-Frequency
Fingerprinting for Feature Extraction of

Traditional Irish Music

Noah Shore

2

Wavelet-Based Time-Frequency
Fingerprinting for Feature Extraction of

Traditional Irish Music

Noah Shore

Thesis submitted in fulfilment of the requirements for the degree of

Master of Science (MSc)
Supervisor: Dr. Michael Mc Gettrick

Head of School: Prof. Cathal Seoighe

Ollscoil na Gaillimhe

University of Galway
School of Mathematical and Statistical Sciences

July, 2025

2

This work presents a wavelet-based approach to time-frequency fingerprinting for time se-
ries feature extraction, with a focus on audio identification from live recordings of tradi-
tional Irish tunes. The challenges of identifying features in time-series data are addressed
by employing a continuous wavelet transform to extract spectral features and wavelet co-
herence analysis is used to compare recorded audio spectrograms to synthetically generated
tunes. The synthetic tunes are derived from ABC notation, which is a common symbolic
representation for Irish music. Experimental results demonstrate that the wavelet-based
method can accurately and efficiently identify recorded tunes. This research study also de-
tails the performance of the wavelet coherence model, highlighting its strengths over other
methods of time-frequency decomposition. Additionally, we discuss and deploy the model
on several applications beyond music, including in EEG signal analysis and financial time
series forecasting.

2

Contents

1 Introduction 7

1.1 Overview . 7

1.2 Traditional Irish Music as a Case Study 8

1.3 Definitions and Terms . 9

2 Background 11

2.1 Motivation for Dynamic Decomposition of Time Series Data 12

2.2 Waveforms and the Fourier Transform 14

2.3 Sound, Music, and Frequency Analysis 17

2.4 Time-Frequency Decompositions of Sound 19

2.5 The Continuous Wavelet Transform . 22

3 Methodology 27

3.1 Data Description . 27

3.2 Symbols and Waveforms . 29

3.3 Wavelet Transform Implementation . 31

3.4 Wavelet Coherence and Pattern Matching 33

4 Results 35

4.1 Spectrogram Fingerprinting . 35

4.2 Prediction Accuracy . 37

4.3 Instrumentation . 39

4.4 Tune Biases . 42

5 Discussion 45

5.1 Phase . 45

5.2 Alternative Applications of the Coherence Model 47

5.3 Computation . 49

5.4 Performance . 50

5.5 Conclusion . 52

A Code 55

A.1 Coherence . 55

A.2 Musical Note Generators . 56

A.3 Envelopes . 59

A.4 The Session Database . 60

4 Contents

B Additional Products 61
B.1 Cone of Influence . 61
B.2 Uncalibrated Coherence Results . 64

Contents 5

Abbreviations

ABC ABC Notation
AIRI All-India Rainfall Index
BPM Beats per Minute
CL Colgate-Palmolive Co
COI Cone of Influence
CWT Continuous Wavelet Transform
dB Decibels
DWT Discrete Wavelet Transform
EEG Electroencephalogram
ES Eversource Energy
fCWT Fast Continuous Wavelet Transform
FT Fourier Transform
FFT Fast Fourier Transform
Fz Frontal Midline Electrode
Hz Hertz
iFFT Inverse Fast Fourier Transform
kHz Kilohertz
MATT2 Machine Annotation of Traditional Tunes
Niño 3 El Niño-Southern Oscillation Region 3
NYSE New York Stock Exchange
Pz Parietal Midline Electrode
S Seconds
SR Sampling Rate
SST Sea Surface Temperature
STFT Short-Time Fourier Transform
TFR Time-Frequency Representation
WCA Wavelet Coherence Analysis
XWT Cross-Wavelet Transform

6 Contents

Chapter 1

Introduction

The opus, along with its principal examples, is
outlined.

1.1 Overview

The information curated for this opus is organized into four main chapters, an introduc-
tion, and two appendices. In the opening chapter, an overview is laid out of the objectives
and methodology in this research, as well as an apologia for the use of traditional Irish
music as a testing ground for the aforementioned methodology. These upcoming sections
aim to lay the groundwork for the following chapter.

Chapter 2 delves into the mathematical prerequisites to be utilized later in the work,
providing preliminary context for some of the back-end processes leading up to grander
modules. This chapter opens with a discussion of Heisenberg’s uncertainty principle,
which implicates some difficult compromises in time-frequency analysis and serves as mo-
tivation for the dynamic decompositions to be explored. Following this is waveforms,
frequencies, and Fourier transforms, which will lead into the next section on sound waves
and frequency analysis. We then look at time-dependent decompositions of sound, begin-
ning with short-time Fourier transforms and Gabor transforms, before introducing the
favored method in this application: the wavelet transform.

In Chapter 3, we look at the methods used to produce the musical examples and obtain
results. This chapter begins with an introduction of the data formats, including live audio
as well as symbolic sheet music. The next section shows the data pipeline for converting
the symbolic music into a waveform that can be compared with the recording. We then
use these datasets to produce spectrograms via the continuous wavelet transform, and
finishing up by introducing the wavelet coherence formula and displaying the coherence
between the symbolic and recorded time series.

We use the coherence in Chapter 4 to construct the tune identification model and
obtain results. This chapter opens with a discussion of the comparison between spec-
trograms and displays the results for a recording compared with a database of tunes.
This is followed up with a section on factors that impact the prediction accuracy of the
model, showing the improved results after some of these modifications are implemented.
We then have a discussion of the model’s reaction to instrumentation, showing how the
results differ for the flute vs the fiddle. The chapter closes with an investigation into the
model’s biases, where two control data points are fabricated to examine how the model

8 Introduction

favors some tunes, and what it is likely to choose when the input data is meaningless.
As a conclusion, Chapter 5 serves to reopen some topics alluded to by the methodology

in Chapters 2 and 3 but unrelated to the tune identifier model. This includes a discussion
of the phase products of the coherence model, followed by applications of these phases in
electroencephalography and econometrics. The concluding section of this chapter contains
some closing remarks and possibilities for future work on the topics discussed.

Appendix A presents some of the code used to produce the waveforms for the tune
wavelet model. The first section showcases several waveform generator functions in
Python, starting with the simple sine wave. Subsequently we have the piano note and
banjo note generator functions as well.

Any other allusions in the text are referenced to Appendix B. This appendix opens
with a look at the cone of influence, a vital component of proper wavelet transform
interpretation. This section contains an example with El Niño being compared to average
rainfall in India. The last section of Appendix B re-displays some of the results from
Chapter 4 without a previously applied calibration to show how bias-resistant the tune-
id model is.

1.2 Traditional Irish Music as a Case Study

Traditional Irish tunes provide an ideal testing ground to showcase the accuracy and
efficiency of the methods outlined in this work. The structure of Irish reels, jigs, and other
dance tunes is highly regular, making them well-suited for apples-to-apples comparisons.

For this research, only reels are used though all the same techniques would work for
jigs, hornpipes, polkas, etc. with minimal changes to the settings. Reels have a time
signature of 4/4, and fall into two main buckets: single reel and double reel. For the
single reel, we have two parts of 8 measures each called A and B parts, which alternate
back and forth. While also containing A and B parts, the double reel on the other hand
has an AABB format, making each cycle twice as long. In this application, all1 double
reels are converted to singles to maintain equal length across tunes.

The symbolic representations of tunes through ABC notation are easily accessible,
allowing for the generation of synthetic versions of these tunes, which can serve as a
basis for comparison in the tune recognition tasks. By feeding this notation through the
pipeline laid out in Chapter 3, we obtain synthesized versions of the tunes that we can
run the wavelet analysis on.

All of our tune data comes from thesession.org, which is the default tunebase for Irish
music players. Each tune has lots of metadata, including aliases, dance format, composer,
and key. Dealing with this metadata is necessary for the applications in this work, and
the SQL queries and dataframe constructions in Python for this application can be found
in Appendix A.

1Some tunes are neither single nor double, such as The Sailor’s Bonnet, which is a one-point-five reel
with the format ABB.

Definitions and Terms 9

1.3 Definitions and Terms

It is necessary to import some of the corpus-specific language used in this work.

• Signal refers to a function that carries information via embedded frequencies. Time
series is a data format in which, for each point in time, there is an associated value.
Time series is not related to the analysis definition of a series as a sequence of
summations. For this paper, time series are treated as discrete approximations of
continuous signal functions, and the words will be used interchangeably.

• In some existing literature on wavelet coherence analysis, including work by Ierac-
itano et al. [16], the wavelet coherence arrays are referred to as coherograms, indi-
cating their analogy to spectrograms. That terminology is not used in this work,
but it refers to the same object.

• The continuous wavelet transforms being shown in this work are clearly not cal-
culated as continuous analytical solutions for Equation (2.5.1), rather they are
numerical approximations of the integral. The term continuous here is meant to
distinguish CWT from the discrete wavelet transform (DWT), whose applications
are outside the scope of this work.

• The terms of scale, wavelength, and frequency refer to different mathematical ob-
jects.

– Wavelength is the measurable length of a cycle.

– Frequency is the number of these cycles per unit time.

– Scale refers to the coefficient by which a wavelet at a central frequency is
stretched or compressed.

Although these necessarily represent different values, in the context of the wavelet
transform they are often used interchangeably. For example, we might say we are
looking for the wavelengths in a signal, or the frequencies in a signal, and we are
speaking of the same thing. Similarly, we might say that we construct a wavelet
transform with a particular resolution in scales, frequencies, or wavelengths, and be
referring to the same thing.

• When discussing Irish music—or folk and dance music in general—it is often helpful
to think of repeated segments as A, B, C, etc., parts. Much like rhyme schemes in
poetry, this makes it easy to classify tune structures using formats such as AABB,
AABBCC, or simply AB. This should not be confused with ABC notation, which
is a formalized system for encoding musical scores.

10 Introduction

Chapter 2

Background

The mathematical prerequisites for time-series
identification and fingerprinting are detailed.

Christopher Grau
Audubon Photography Awards

The Great Blue Heron beats its
wings about 2.5 times per second

[19] — a slow, steady, and controlled
rhythm. This high spectral precision
and stable momentum allow for fast
and efficient flight, while sacrificing

agility and maneuverability.

The Ruby-Throated Hummingbird,
on the other hand, ranges from 50
to 100 wingbeats per second [20],
making it highly accurate with

respect to time. This time precision
allows the hummingbird to hover
perfectly in place and grants it
excellent aerodynamic control,

though its top speed is limited and
it burns through energy at

unsustainable rates for long-distance
flight. Gary Robinette

Audubon Photography Awards

12 Background

2.1 Motivation for Dynamic Decomposition of Time

Series Data

The exercise of decomposing a signal into its component frequencies has been explored
since the invention of the Fourier transform (FT), which is fundamentally a global opera-
tor. This makes it perfectly capable of telling us the frequencies present without giving us
any information on when they manifest. If we are interested in extracting the temporal
indices of our frequencies via Fourier, we must compute transforms at multiple timesteps.
Achieving accuracy in this time-frequency mesh grid quickly leads to compromising lim-
itations derived from the uncertainty principle.

To show this, let us begin with Heisenberg’s uncertainty principle [1] as it is written
in the context of quantum physics:

∆x∆p ≥ ℏ
2

(2.1.1)

For a particle, ∆x represents uncertainty in position, ∆p uncertainty in momentum, and
ℏ is the reduced Planck’s constant.

In quantum mechanics, a particle’s state can be represented as a wavefunction in either
position space, ψ(x), or momentum space, ϕ(p). These two functions are Fourier duals,[2]
meaning the Fourier transform of ψ(x) yields ϕ(p), and vice versa, without altering the
underlying physical state. To show this duality, let us begin by producing ϕ(p) by the
FT of ψ(x).

ϕ(p) =
1√
2πℏ

∫ ∞

−∞
ψ(x) e−ipx/ℏ dx (2.1.2)

Conversely, the position-space wavefunction ψ(x) can be recovered by the inverse Fourier
transform:

ψ(x) =
1√
2πℏ

∫ ∞

−∞
ϕ(p) eipx/ℏ dp (2.1.3)

In this case, when we refer to the position wavefunction vector’s corresponding vector
in momentum space, we mean the same quantum state, represented in a different or-
thonormal basis of the Hilbert space [3]. The Hilbert space structure provides that states
can be projected onto different bases through transformations like Fourier. Likewise, in
classical wave mechanics, a vector in the frequency domain is the Fourier dual of a cor-
responding vector in the time domain, both being representations of the same wave.

Given a wave represented by a function f(x), its Fourier transform f̂(k) is defined as:

f̂(k) =
1√
2π

∫ ∞

−∞
f(x) e−ikx dx (2.1.4)

The inverse Fourier transform recovers f(x) from f̂(k):

f(x) =
1√
2π

∫ ∞

−∞
f̂(k) eikx dk (2.1.5)

Where k is the wavenumber, proportional to frequency.

Motivation for Dynamic Decomposition of Time Series Data 13

Because these are the same transform between dual spaces, the uncertainty principle
is equivalently applied to time and frequency domains. This time we write it as:

σt · σf ≥ 1

4π
(2.1.6)

Where σt is deviation in time and σf is deviation in frequency. From this formulation,
we can see that more certainty in one domain comes at the cost of certainty in the other.

Returning to the implications for time-frequency decompositions, we find that fine
resolutions are not affordable in both domains for many applications. If we were to create
a time-frequency mesh grid over our time series and take Fourier transforms at each time
step, we would have to sacrifice frequency range in order to achieve sufficient constitution
in our time mesh. This type of static decomposition is known as a Short-Time Fourier
Transform (STFT), which is defined as:

STFTx(t, ω) =

∫ ∞

−∞
x(τ) g(τ − t) e−iωτ dτ (2.1.7)

Here, x(τ) is the signal, ω represents frequency, and g is a window function that is con-
volved across the signal to reveal the frequencies present at each timestep. The STFT
domain compromise is illustrated in Figure 2.1.

Time

F
re
qu
en

cy

Time

F
re
qu
en

cy

Figure 2.1: STFT tradeoff. Left: Fine time, poor frequency tiling. Right: Fine frequency,
poor time tiling.

This natural compromise has led to innovation in tiling methods apart from the STFT
for sensitive applications, and it has proven to be a lucrative science, as we will see in
the following chapters.

14 Background

2.2 Waveforms and the Fourier Transform

To illustrate how we pull frequency information from a waveform, let us examine a signal
that was generated as a sum of multiple sine waves, as observed in Figure 2.2. For the
example, we will call this signal x. Units of amplitude are omitted here as they are irrele-
vant to the example, but in time we might imagine this signal lasting for exactly 1 second.

Figure 2.2: Example waveform x.

As we are dealing with digital signal data, x is not stored as a set of wavelength coeffi-
cients, but rather a time series. This means that x was generated with a sampling rate,
or a chosen time-mesh grid, along which each point was sampled for amplitude.

If d is the duration, r is the sampling rate, and N = r · d is the total number of
samples, then x is an element of RN . Components of x are properly defined as:

x := {x[n]}N−1
n=0 , x[n] ∈ R ⊂ C (2.2.1)

Or as a column vector:

x =


x[0]
x[1]
x[2]
...

x[N − 1]

 (2.2.2)

As a vector, x ∈ RN ⊂ CN . The CN is notable here because it is the pre-image for the
Discrete Fourier Transform (DFT), which is capable of processing complex data, though
at this point we are dealing only with real-valued time series. Strictly speaking, DFT
is a function that receives the discretized x as input and returns a sequence of complex
coefficients:

DFT : CN → CN (2.2.3)

Whose image is defined as:

X := {X[k]}N−1
k=0 , X[k] ∈ C (2.2.4)

Waveforms and the Fourier Transform 15

Where

X[k] =
N−1∑
n=0

x[n] · e−i2π kn
N for k = 0, 1, . . . , N − 1 (2.2.5)

For this example, the output X can be seen in Figure 2.3.
As X ∈ CN is a complex-valued vector, we are clearly missing some information

when looking at the DFT output, namely, the complex arguments. When we say that
Figure 2.2 (x) and Figure 2.3 (X) are different representations of the same wave, note that
only the magnitudes of the Fourier coefficients produced by Equation (2.2.5) are displayed
in Figure 2.3. In order to fully represent x in the frequency domain, and to recover the
original signal with Equation (2.2.8), it is necessary to sustain complex elements in the
transform space. The Inverse Discrete Fourier Transform (IDFT) is defined as:

IDFT : CN → CN (2.2.6)

now x is the image:

x := {x[n]}N−1
n=0 , x[n] ∈ C (2.2.7)

where elements of x are calculated as:

x[n] =
1

N

N−1∑
k=0

X[k] · ei2π
kn
N for n = 0, 1, . . . , N − 1 (2.2.8)

By only looking at Figure 2.2, it is quite unintuitive to deconstruct the frequencies
that went into this signal. As frequencies carry the recognizable information in signal
data, having a method of wavelength decomposition is pivotal for data transfer.

Figure 2.3: Fourier transform X.

Figure 2.3 highlights the original oscillators summed to produce the wave x. We easily
note the magnitude peaks at 24, 40, 60, and 80 Hz. The times at which these frequencies
appear are trivial because signal x is a stationary signal, meaning the frequencies are
consistent over time. This class of signal would manifest in music as a consistent tone
or set of tones, unhelpful for representing any real musical piece. For a more realistic

16 Background

Figure 2.4: Transient frequencies in signal y

example of a signal containing time-transient wavelengths, examine signal y being shown
in Figure 2.4.

To show the frequencies contained in y, we apply Equation (2.2.5) to get Y: the tran-
sient signal’s Fourier transform, as is shown in Figure 2.5. In this case, the overlapping
frequencies that contributed to signal x of 40, 80, and 100 Hz are observed to be mani-
fested in signal y. Due to the frequencies coming in and out randomly, the domain is noisy
and there is little information we can reap from the barren soil of this time-independent
representation. The times at which these frequencies are present in the signal is vital to
its identity, introducing the motivation for a time-dependent frequency decomposition of
y. This compromise analysis will be discussed in Section 2.4.

Figure 2.5: Fourier Transform Y

Sound, Music, and Frequency Analysis 17

2.3 Sound, Music, and Frequency Analysis

When we experience a sound wave, our eardrum vibrates to match its frequencies, though
we do not sense the individual oscillations of the drum. Rather, we have a familiar idea of
how these frequencies register as pitches. A musical piece is easily defined as a sequence
of frequencies, and this definition is quite sensitive to perturbations in both frequency
and time. That is, a small change in frequency can result in a piece being unrecognizable,
and similarly, small changes in time will unpleasantly contort the rhythm. This makes
us perfect signal decomposers in both time and frequency domains.

Music exists in nature as a signal function, and it exists in digital storage as time series
data. Neither of these representations are remotely recognizable as a musical piece— we
are not able to distinguish the musical familiarity by looking at its sound wave.

Figure 2.6: Audio waveform ϕ.

Apart from crude metrics such as volume, we have no idea what was recorded to
generate the waveform in Figure 2.6, which henceforth will be referred to as ϕ. The
astute among us could observe that there are multiple frequencies manifesting at each
time, rather than simply being clean oscillations, which could be a clue that it was made
with some instrument that generates harmonics. This will be discussed in further detail
in Chapter 4.

Of course, this is only one representation of the sound wave, the one that exists in
the time domain. We could also look at the very same wave in the frequency domain, as
shown in Figure 2.7. From this perspective, all temporal information has been sacrificed,
such as when the pitch is higher or lower or how the magnitude changes over time. To
parallel the quantum wavefunction being viewed in position and momentum domains,
these are dual representations of the same wave, connected by the Fourier transform.

Note that the Fourier coefficients range from a frequency of 0 Hz up to 4000 Hz. This
is the maximum frequency that can be observed in this signal, being exactly half of the
original sampling rate. This is known as the Nyquist frequency [5] which is commonly

18 Background

referred to as the upper limit of frequencies that can be observed in a signal. As a
corollary, most digital audio is recorded at 44.1 kHz, implying a Nyquist number of
22.05 kHz. This recording technique operates under the assumption that 22050 Hz is the
maximum listening frequency that a human might be interested in. From An Introduction
to the Psychology of Hearing : “The range of human hearing extends from about 20 Hz to
20,000 Hz in young, healthy individuals, although the upper limit decreases with age.”[6]
By this standard, 44.1 kHz operates under a conservative estimate.

Figure 2.7: Magnitudes of the Fourier coefficients

While there is much that can be extrapolated from viewing the coefficient magnitudes
on this spectra graph, we face the same limitations as we did in analyzing Y in Figure 2.5.
If we know we are looking at a piece of music, one could guess not just the key or mode,
but how heavily this piece relies on the root notes, versus branching off to more dissonant
sounds. Although tangible information is intuitively read from this representation, neither
Figure 2.3 nor 2.7 legibly depicts any specific features that reliably distinguish music. For
these features to be recognizable, a balance between the two representations is required.

Time-Frequency Decompositions of Sound 19

2.4 Time-Frequency Decompositions of Sound

In the interest of procuring an intuitive representation of our wave in Figure 2.6 (ϕ), let
us turn our attention to another picture, known as a spectrogram, in which we project
the amplitude into a third dimension and focus on time and frequency information. We
can begin by convolving the Fourier coefficients across our signal, creating an STFT as
mentioned in Section 2.1. Because we are dealing with digital audio data, a discrete sum
must replace the integral shown in Equation (2.1.7)1

Gaborx[t, ω] =
∞∑

τ=−∞

x[τ] · g[τ − t] · e−iωτ (2.4.1)

And for our kernel, the vague window function w in Equation (2.1.7) now gets defined by
a Gaussian bell curve window (g), as shown in Equation (2.4.2). The replacement makes
this STFT a Gabor Transform [9].

g[n] = e−
1
2(

n−N/2
σ)

2

, 0 ≤ n < N (2.4.2)

Where n ∈ {0, 1, . . . , N − 1}, N is the window length parameter, and σ represents the
standard deviation, or spread, of the bell curve.

To understand how these Gaussian parameters affect the Gabor transform, consider
the illustration of a singular time step shown in Figure 2.8. The highlighted time region
shows where the kernel is active: the time step in which the Fourier coefficients are
recorded. In this example, a wide window of N = 1500 samples is shown, with a standard
deviation σ = N

6
. If the audio of signal x is sampled at 8000 Hz, this is equivalent to a

time window of about 0.19 seconds. Recall that, according to Equation (2.1.6), a wider
window produces higher accuracy in the frequency domain while sacrificing temporal
precision.

Figure 2.8: Gaussian window at one time step in signal x

1In practice, x[τ] is finite-length and assumed zero outside its support, so the integral or sum is taken
over the effective signal window. We write the [−∞,∞] boundaries here as a formality, to indicate this
as a discretized convolution. The same logic applies to Equation (2.1.7).

20 Background

Substituting ϕ in for the x[τ] in Equation (2.4.1) produces the spectrogram shown in
Figure 2.9, with time displayed on the x-axis, frequency on the y-axis, and the amplitude
is represented by color. This heatmap provides a superior representation of the musical
information of ϕ because all three of these dimensions are crucial to the identification of
a musical fingerprint. As a first look at the time-spectra of ϕ, 2.9 was generated using a
conservatively small σ value.

Figure 2.9: Gabor transform of signal ϕ

The Gaussian used to produce Figure 2.9 was heavily weighted for temporal accu-
racy. Notice that we have significant vertical bleeding, to the point where the original
frequencies to be captured are barely recognizable. Any sound containing such a broad
consecutive spectrum of frequencies would simply manifest as white noise. This limited
precision on the y axis is more apparent when held against a Gabor transform yielded
from a high spread Gaussian kernel, as seen in Figure 2.10. In this case we observe hori-
zontal overlap of the dark regions, as if they’ve been smeared like paint across the array.
However, they do maintain clean delineations along the vertical.

Figure 2.10: Gabor transform with wide kernel

Time-Frequency Decompositions of Sound 21

If the mission is to find a musically intuitive representation of ϕ, the Figure 2.10 is an
over-correction of the problem observed in Figure 2.9. To find a balance between the two,
we adjust σ until we are satisfied in distinguishing the frequencies while also having a
solid estimate of when they are heard. This Goldilocks transform is shown in Figure 2.11.
A clear tone right around 390 Hz is seen at the beginning, sustaining for approximately
0.3 seconds, after which it has about a 0.1 second release. Note that, for Figures 2.9, 2.10,
and 2.11, the y-axis is scaled logarithmically. This is a purely cosmetic choice, meant to
emphasize those frequencies in which most music is explicitly written, typically ranging
from 200 to 1000 Hz.

The balanced Gabor transform in Figure 2.11 is a useful compromise between time
and frequency resolution, allowing us to distinguish discrete pitches and temporal onsets
with sufficient clarity to trace musical events — such as sustained tones, note attacks,
and decay characteristics. Although this is a more familiar representation of our signal,
there are significant limits to our comprehension of the static time-frequency mesh. In
the following section, we will explore algorithmic and perceptual heuristics for problem
and see computationally viable, yet expensive solutions to it.

Figure 2.11: Gabor transform with balanced kernel

22 Background

2.5 The Continuous Wavelet Transform

After laying out the problems with trading certainty between time and frequency, we
should explore a dynamic approach to time-frequency analysis with the wavelet transform.
For this method, instead of taking independent frequency spectra within short windows,
we convolve a localized wave function, known as a wavelet, against our signal, producing
magnitudes of representation for each timestep of the convolution. An example of a
wavelet function, the Morlet wavelet [8], is shown in Figure 2.12, where we see the real
and imaginary parts plotted independently.

Figure 2.12: Morlet wavelet with f0 = 5.

Just as the classical Fourier transform gave us the phase information of the signal as
complex numbers, so too can the wavelet transform if employing a complex-valued wavelet
such as the Morlet. If we are interested only in the frequencies and times at which they
occur, as is the case with music, this phase information is simply a by-product, though
broad-domain applications that utilize the phases are discussed in Chapter 5.

The wavelet transform operates by scaling the wavelength of a mother wavelet across
whichever band of frequencies we are interested in. Now, rather than exchanging accuracy
between our domains of interest, we can choose whatever resolution in frequency we
desire by adding more scaled wavelets. The only limitation in time resolution comes
from the uncertainty principle applied individually at every scale. This means that our
time precision improves as the wavelength of the wavelets decreases. In contrast with
Figure 2.1, the dynamic mesh of the wavelet transform can be seen in Figure 2.13. Each
blue stripe represents one scaled wavelet’s convolution across the signal, and as the scale
increases, we see the stripes have better resolution in time, but worse in frequency.

The Continuous Wavelet Transform 23

Time

Frequency

Figure 2.13: Wavelet transform mesh

This phenomenon, which applies to all waves being measured, occurs because less time
is required to observe the gap between peaks when the wavelength is low. To illustrate
this principle with an example, let us look again at signal y. The real component of a
Morlet wavelet at three different scales is active at a singular timestep in y in Figure 2.14,
each scale preserving the same number of oscillations. Thus, the smaller wavelength takes
up a smaller window and we get a finer, more localized view of the frequencies at this
timestep.

These scaled and shifted versions of the mother wavelet (ψ) are formalized in the
Continuous Wavelet Transform (CWT). For a signal x(t), the CWT is defined in Equa-
tion (2.5.1).

Wx(a, b) =
1√
|a|

∫ ∞

−∞
x(t) · ψ∗

(
t− b

a

)
dt (2.5.1)

Where:

• a is the scale parameter, inversely related to frequency

• b is the translation (or time shift)

• ψ∗ is the complex conjugate of the mother wavelet

It is important to note that other mother wavelets can be substituted in for ψ, although
the Morlet is most commonly associated with the continuous wavelet transform [7]. We
define the Morlet as:

ψ(t) := π− 1
4 eif0te−

t2

2 (2.5.2)

This wavelet is essentially a complex sinusoid modulated by a Gaussian envelope, bearing
strong resemblance to the Gabor kernel discussed earlier. The key parameter here is f0,
the central frequency of the wavelet, around which the other frequencies in the wavelet
transform are scaled.

24 Background

Figure 2.14: Three scaled Morlets at a timestep in y

The full convolutions in time for each of the three wavelets in Figure 2.14 are displayed
in Figure 2.15. This would be the result if we performed Equation (2.5.1) on signal y at
only three scale values of a, those corresponding to 40, 80, and 100 Hz. Note how the
resolution in time increases as the wavelength decreases, in accordance with the meshing
in Figure 2.13. Recall also that these are complex oscillators, so only the real components
are seen in Figure 2.15. The magnitudes of the complex wavelet coefficients are plotted
in the three-banded proto-spectrogram in Figure 2.162.

2Figure 2.16, and all spectrograms shown moving forward, do not include numerical labels on the
Magnitude colorbar. While we can assume these magnitudes range between 0 and 1, as shown in
Figures 2.9, 2.10, and 2.11, the absolute values are in fact irrelevant, as we are only concerned with the
relevant magnitudes within the time-frequency space. Similarly, all sound waves shown moving forward
do not include labels on the amplitude (y) axis, as we do not care about the overall volume of a sound,
just the relative volume between temporal locations

The Continuous Wavelet Transform 25

Figure 2.15: Real parts of the wavelet coefficients of y at three scales.

Figure 2.16: Magnitudes of wavelet coefficients for three scales on y.

26 Background

To wrap this discussion back into the problem of spectrogram time-frequency resolu-
tion from Section 2.4, we now apply the continuous wavelet transform to the same signal
ϕ from Figure 2.6. The result, visualized in Figure 2.17, provides a multi-resolution view
of the signal. Compared to the Gabor transform in Figure 2.11, the CWT is able to
preserve detail across a broader range of frequencies, while capturing sharp onsets and
releases with high fidelity.

Figure 2.17: Continuous Wavelet Transform of signal ϕ

This flexibility makes wavelet transforms especially useful for pattern recognition and
feature detection in music. Though computationally more expensive than STFT, the
CWT’s superior resolution trade-offs make it a powerful foundation for subsequent fea-
ture extraction and machine learning tasks, which will be discussed in Chapter 5. The
following chapters will discuss how we can use these methods directly, in conjunction
with Wavelet Coherence Analysis, to categorize and identify Irish music.

Chapter 3

Methodology

By introducing an application for the wavelet
transform to traditional Irish music, we prove
the capabilities of the wavelet transform and
wavelet coherence models.

3.1 Data Description

For this application, we have two types of data to feed into our models:

• Live audio recordings

• Musical Score Notation

For the audio, all inputs are recorded at 8000 Hz, and for exactly 19.20 seconds. This
makes each audio input a time series vector of length n = 153.6 × 103 samples. An
example of this data type can be seen in Figure 3.1.

Figure 3.1: 19.20 seconds of audio at 8000 Hz.

28 Methodology

These particular dimensions are downstream of choices made about how to compare
the recordings with the sheet music data. In this research we are only looking at reels, and
have made some aforementioned edits to ensure their equal length. We are choosing to
record everything at exactly 100 BPM, and we are aiming to record only reels containing
exactly 32 beats. This rate of 0.6 seconds per beat ensures that each note has enough
sustain to be recognized on our spectrogram.

For the sheet music data, all scores come from contributors on The Session [25], and
we are using a slightly padded version of the list curated by Mc Gettrick et al. [13]. This
list includes 78 reels, and Figure 3.2 is one such example.

Figure 3.2: The Galway Rambler score.

Section 3.2 will focus on converting this annotated format into a form that can be
compared with the recording.

Symbols and Waveforms 29

3.2 Symbols and Waveforms

To make an apples-to-apples comparison between the symbolic representation of music
and the raw sound, we need to generate a synthetic waveform that matches what is
written in Figure 3.2. We can begin by retrieving the tune’s ABC notation, which is
saved in the following format:

X: 1

T: The Galway Rambler

R: reel

M: 4/4

L: 1/8

K: Gmaj

(3GGG dG eGdG|(3GGG dB AGEF|GFGA BABd|gedB AGEF|

(3GGG dG eGdG|(3GGG dB AGEF|GFGA BABd|gedB A2 Bd||

gfgb a2ab|gabg agef| g3 b a2ab|gedB A2 Bd|

gabg gabg|gabg a2ga|bgag (3efg fa|gedB AGEF||

For each tune listed on The Session, there are multiple settings (transcribed versions)
uploaded, one of which is displayed above for The Galway Rambler. The X: 1 indicates
that this setting has an index of 1. Other metadata in preamble lists the title, dance,
meter, length and key. Additionally, the lack of ||: and :|| symbols bookending the
first and second halves of the ABCs indicate that this is a single reel.

This tune contains a total of 16 bars at 4/4 time, with each bar containing 4 quarter
notes or 8 eighth notes. If we divide the tune into 128 time slots, we can represent it
by filling each slot with a letter. Using this method, we have to treat each point on the
grid independently, i.e. all notes are treated as eighth notes. The differences in meter are
dealt with in the following ways:

• The long notes, such as quarters, dotted quarters, or half notes, are broken into
individual eighth notes.

– g3 −→ ggg, A2 −→ AA

• Triplets kick out the middle note, treating the first and third as eighth notes.

– (3GGG −→ GG, (3efg −→ eg

To properly read this, the key is vital as well. A signature of G major signals to us
that the f is sharpened, so we should indicate that with a f̂. The different letter case
also denotes the octave in which the note lies: C would indicate middle C on the piano,
with a frequency of 261.63 Hz, while c is an octave above. With this, we are ready for
the next step in our pipeline: encoding semitones from the ABC notation. We use the
following encoder to represent the tune as a sequence of tones, each integer indicating
the number of semitones above middle C.

Given a value n in this sequence, the following formula delivers the corresponding
frequency:

f = f0 · 2n/12 f0 = 261.63Hz (3.2.1)

30 Methodology

C → 0 Ĉ → 1 D → 2 D̂ → 3 E → 4 F → 5 F̂ → 6 G → 7

Ĝ → 8 A → 9 Â → 10 B → 11 c → 12 ĉ → 13 d → 14 d̂ → 15

e → 16 f → 17 f̂ → 18 g → 19 ĝ → 20 a → 21 â → 22 b → 23

For example, the a note above middle C would have n = 9 semitones, yielding:

f = 261.63 · 29/12 = 440Hz (3.2.2)

Recall that our sequence is 128 tones long, and has a total of 32 beats. If we want to
simulate The Galway Rambler at 100 BPM, we need each tone to last for exactly 0.15
seconds. At 8000 Hz sampling rate, each tone is constructed into a sine wave containing
exactly 1200 samples. This will bring the total length of the constructed waveform to
153.6× 103 samples, matching the length of the recorded audio from Section 3.1.

The first three notes of The Galway Rambler can be seen as their waveform rendering
in Figure 3.3.

Figure 3.3: First half second of The Galway Rambler (synthesized).

Optionally, we can add some harmonics and give the waveforms individual envelopes to
better simulate a real instrument, as seen in Figure 3.4. The wavelet transform for this
synthesized clip can be seen in Figure 3.5.1

Figure 3.4: The Galway Rambler opening with harmonics and envelopes.

1The code containing the specific harmonics and envelopes can be found in Appendix A.

Wavelet Transform Implementation 31

3.3 Wavelet Transform Implementation

Figure 3.5: Example wavelet transform.

After our data has been properly sautéed and stitched up, we are ready to implement the
CWT. Beginning with the recording, the time series data are fed into a numeric solver
for the CWT integral. For efficiency, the wavelet coefficients produced by this model
are computed using the Fast Continuous Wavelet Transform (fCWT), which allows us
to make practical use of this expensive convolution. More information on fCWT will be
discussed in Chapter 5.

Figure 3.6: The Sailor’s Bonnet score.

As an example, let us start with the written score for The Sailor’s Bonnet, displayed
in Figure 3.6 2. Using the pipeline outlined in the previous section, the synthetic spec-

2The last measure, after the :|| symbol, has been removed from the ABC notation in this work, as
it is irrelevant.

32 Methodology

trogram is produced by the score, and can be seen in Figure 3.7. One can observe the
harmonic overtones encoded into each note, as well as see how the long notes, like the
first note in The Sailor’s Bonnet, are broken up.

Figure 3.7: The Sailor’s Bonnet Synthetic Spectrogram.

To ensure that the recording matches up with the synthetically generated waveform,
this model has a built-in metronome and count-in. This is necessary to compare what is
being played with the written score. Figure 3.8 shows the recorded waveform, as well as
the computed wavelet transform.

Figure 3.8: The Sailor’s Bonnet, played on fiddle.

Wavelet Coherence and Pattern Matching 33

3.4 Wavelet Coherence and Pattern Matching

At long last we are at the crux of the tune identification example: wavelet coherence
analysis. This powerful method is used across domains to study the relationships between
time series data. If we have two signals, x and y, the wavelet coherence is computed by
the following formula:

C(a, b) = |S (Wxy(a, b))|2

S (|Wx(a, b)|2) · S (|Wy(a, b)|2)
(3.4.1)

Where S is a customizable smoothing operator, defined depending on how loose we allow
our search for time-frequency relationships to be. Similar to Equation (2.5.1), a and b
represent scale and time, respectively.

We must also define here the cross-wavelet transform, written in Equation (3.4.1) as
Wxy.

Wxy(a, b) := Wx(a, b) ·W ∗
y (a, b) (3.4.2)

As this is an element-wise operation between two arrays of complex numbers, Wx(a, b)
and Wy(a, b), the multiplication between the first element and the complex conjugate of
the second returns a complex number whose argument is the difference between phases.
The benefit of this being that, for each frequency shared between x and y, we can see the
phase shift between the signals. Applications of this phase differential will be discussed
in Chapter 5, though it will not be relevant for the musical example in this work.

As we have prepared two wavelet transforms in the previous section, we are ready
to implement the wavelet coherence on our musical data. Letting x(t) be the recorded
waveform and y(t) be the synthetic, we already have the spectrograms at our disposal.
After substituting these arrays for Wx and Wy, we get our matrix C, which is displayed
in Figure 3.9.

Figure 3.9: The Sailor’s Bonnet Coherence

34 Methodology

Chapter 4

Results

Using the outlined methods of the wavelet trans-
forms and wavelet coherence, the tune recogni-
tion model’s capabilities are demonstrated.

4.1 Spectrogram Fingerprinting

Figure 3.9 displays the coherence between two signals that are alternative representations
of the same tune; one being symbolic, and the other being audio. To examine the utility of
this, consider another coherence array in Figure 4.1, where the inputs are not representing
the same tune. Here, the recording of The Sailor’s Bonnet is matched against the score
of The Galway Rambler. Note how the red regions are few and far between, especially
compared with Figure 3.9.

Figure 4.1: Mismatched coherence.

36 Results

The key factor in the identification model is this head-to-head comparison between
transforms. If we have the spectrogram of a recording matched against a database of
tune scores, any crude metric could hint at what was recorded. For The Sailor’s Bonnet
recording of Figure 3.8, the total (gross) coherence of each pairing, produced by summing
the entire array, in the tunebase is listed in Figure 4.2.

Figure 4.2: Gross Coherence.

Clearly, The Sailor’s Bonnet was chosen by the model as the most likely match,
proving in concept the fingerprinting capabilities of the wavelet transform. However, in
pursuit of scientific inquiry, some additional factors will be discussed in the next sections
to increase the model’s decisiveness.

Prediction Accuracy 37

4.2 Prediction Accuracy

In implementing this kind of model for wavelet transform fingerprinting and tune identifi-
cation, one comes across innumerable knobs and dials that can affect the results. To name
a handful, we could fudge the sampling frequency, range of scales, image resolution, beats
per minute (BPM), playtime duration, and harmonic overtones in synthesizers. These
must be arbitrated to walk a delicate balance of multiple desirable properties for the
model, including computational efficiency, predictive accuracy, ease of use, and explana-
tory power.

For example, convolving a thousand wavelets at scales ranging between 200 and 4000
Hz may have an unnecesarily high resolution in the frequency domain, dramatically in-
creasing the compute time. Conversely, sending only fifty wavelets results in insufficient
distinctions between the wavelengths. Most of the results in this work are from wavelet
transforms with 200 scales, making 200 the maximum resolution in the frequency domain.

In Chapter 2, it was revealed that humans can hear pitches above 20,000 Hz, yet all of
our results display axes capped at 4000 Hz. Furthermore, we mentioned that most Irish
music is explicitly written below 1200 Hz, which raises the question of why this range
was chosen. Why not cap it at 1200 to capture only the frequencies that are expressed
symbolically? Or why not 20,000, and see a more complete profile of the sounds we are
experiencing?

Here, we are aiming to balance prediction accuracy with explanatory power. Record-
ing the tunes at an 8000 Hz sampling rate is approaching the lowest frequency where
the tunes are still recognizable, and 4000 Hz is the Nyquist frequency at this rate. A
cap of 4000 Hz allows us to see some of the most prevalent overtones of our recorded
and synthetic waveforms, while still maximizing the frequencies that are necessary to
compare.

If one were to cap the scaling at 1200 Hz, there would be a noticeable boost in the
accuracy of the model. The coherence array and resulting summations are shown in
Figures 4.3 and 4.4, respectively.

Figure 4.3: The Sailor’s Bonnet Coherence in focused frequency range.

38 Results

Figure 4.4: The Sailor’s Bonnet resultant sums from low range comparisons.

As a quick footnote, the results in Figures 4.2, 4.4 and 4.10 have been calibrated to the
tune with the lowest coherence. For uncalibrated results, see Appendix B.

Instrumentation 39

4.3 Instrumentation

As the coherence transforms are scaled logarithmically, the details at the higher frequen-
cies are lost when compared to the low end of the spectrum. Those high regions being
where the harmonics live, it would be expected for the model to be more capable of
comparisons between spectrograms that omit the overtones.

When calculating the coherence, each input has its own source of overtones. For the
synthetic tune, the harmonics are created by the process shown in Figure 3.4. These
additional frequencies are modeled after the timbre of a grand piano, whose details are
described in Appendix A.

(a) Fiddle: waveform and spectrogram. (b) Flute: waveform and spectrogram.

Figure 4.5: Wavelet transforms of the Ships are Sailing reel, recorded on fiddle and flute.

The live counterpart data will carry the natural harmonic frequencies of whichever
instrument was being recorded. For example, observe the recording of Ships are Sailing,
played on both the fiddle and the Irish flute1, as seen in Figure 4.5. Clearly, the bowed
string instrument has a more pronounced overtone profile than the flute, whose strongest
frequencies lie solidly within the region corresponding to the written tune, which is shown
in Figure 4.6.

From the waveforms alone in Figure 4.5, several differences between the instruments
are immediately apparent. Notably, the flute waveform contains distinct moments of
pure silence, corresponding to the flutist pausing to take a breath. In contrast, the fiddle
produces a continuous noise, with some amplitude always present. Additionally, this
suggests that the tune may not have been played exactly according to the score, which
calls for a rest at the end of the A part, as indicated in Figure 4.6, Measure 8.

In the previous section, we discussed how adjusting the frequency scope of the coher-
ence transform can affect the model’s ability to identify tunes. Specifically, we observed
that restricting the highest frequency to match the range expected from standard score
notation may improve the decisiveness of the results. Based on this prior, we hypothesize
that the flute may serve as a more effective instrument for tune identification, due to its
strong emphasis on fundamental frequencies.

1Special thanks to Jeremy Jenkinson for providing the flute playing.

40 Results

Figure 4.6: Musical Score for the Ships are Sailing reel.

To examine this hypothesis, consider Figure 4.7, which displays the summed coherence
scores. The model appears to be more decisive for the flute recording than for the fiddle,
as indicated by the significantly higher coherence score for Ships Are Sailing in the flute
recording. Naturally, this is just a single comparison between two recordings, and does
not constitute a rigorous conclusion about identifiability across instruments. However, it
is worth noting that many players anecdotally report that apps such as TunePal tend to
be more reliable in identifying tunes played on the flute or whistle.

Work by Bryan Duggan (creator of TunePal), for his Machine Annotation of Tradi-
tional Tunes (MATT2) algorithm makes use of an onset detection that accommodates for
phrasing in the concert flute and tin whistle. This special treatment of the expressiveness
in phrasing, along with ornamentation, long notes, and transposing by octave “results in
a statistically significant improvement in annotation accuracy over approaches that do
not accommodate expressiveness” [24].

Bellows instruments, such as the concertina and accordion, use reeds that provide
a clean, fundamental-heavy tone. This should facilitate reliable identifiability in mod-
els such as ours, though these instruments use multi-reed systems, where each button
corresponds to two (or sometimes three) reeds, slightly out of tune with each other to
produce an oscillating, or slight vibrato effect. Further discussion of the timbres in Irish
traditional instruments is provided in Appendix A.

Ships are Sailing at Sunrise
Galway Hooker Sailing Club, 2025

Instrumentation 41

Figure 4.7: Musical Score for the Ships are Sailing reel.

42 Results

4.4 Tune Biases

As this model’s capabilities are explored, it can be observed that certain tunes are favored
when it comes to the selection process. Although quite reliable for all tunes sampled,
there are some recurring titles that show up as second or third choices, or are selected
when the recorded input is not a recognizable tune. To probe these biases, two control
data series are constructed. The first signal, a = {an}Nn=1 where an = 0, is completely
blank. The second, b = {bn}Nn=1 is randomly generated white noise at frequencies ranging
from 200 to 3000 Hz for 19.2 seconds. Both a and b are plotted in Figure 4.8.

Figure 4.8: Controls a (top) and b (bottom).

The spectrograms produced by controls a and b are shown in Figure 4.9, and the
coherence results are shown in Figure 4.10. These results synchronize with anecdotal
observations, in which tunes such as The Glass of Beer, The Concertina Reel, or The
Mountain Road tend to score highly, regardless of what is being recorded. However, these
differences are amplified by the calibration, and the uncalibrated results in Appendix B
show how small these biases are in reality.

These differences could arise from a number of factors, such as tune complexity or
wavelength scaling. Because lower frequencies are emphasized by our logarithmic scaling
of the y-axis, they will take up more space in our spectrograms and contribute more
to the overall coherence. This means that tunes with more low pitches may be slightly
advantaged.

Another explanation for the differences could be due to the smoothing operator that
was implemented in the coherence calculation in Equation (3.4.1). Longer or repeated
notes in a tune can blend together in the spectrograms, to create deeper red regions when
the smoothing takes effect, benefiting tunes with more repetition. This could explain the
apparent coincidence between biased tunes and tunes of low Kolmogorov Complexity, as
catalouged by Mc Gettrick et al. [13].

Tune Biases 43

Figure 4.9: Spectrograms for a (top) and b (bottom)

44 Results

Figure 4.10: Total coherence for Controls a (left) and b (right).

Chapter 5

Discussion

Additional details and applications are explored,
along with some notes about algorithm efficiency
and closing remarks.

5.1 Phase

Although the previous example demonstrates the accuracy of the wavelet transform
model, it does not fully exploit the capabilities of wavelet coherence analysis. For the con-
tinuous wavelet transform (CWT), the Morlet wavelet is most commonly used because it
produces both real and imaginary components in the wavelet coefficients. This allows us
to determine not only which frequencies are present in the signals, but also their relative
phase alignment over time.

To illustrate this, consider the example of sine and cosine waves oscillating at 25 Hz
in Figure 5.1. These basis functions are exactly 90 degrees out of phase, a relationship
that should be reflected when applying the cross-wavelet transform (XWT), as defined in
Equation (3.4.2). The resulting quiver plot, overlaid on the coherence array in Figure 5.2,
visualizes this phase relationship.1

Figure 5.1: Sine and cosine functions at 25 Hz.

1At these low frequencies, the cone of influence (COI) noticeably affects the boundaries. More
information on the COI can be found in Appendix B.

46 Discussion

Because the cosine function’s wavelet coefficients are passed as the second argument
to the XWT, they are complex-conjugated, while the sine function’s coefficients remain
unchanged. This results in arrows pointing downward, indicating that the sine wave lags
behind the cosine. Reversing the order of the arguments would cause the arrows to point
upward instead.

Figure 5.2: XWT quiver plot over coherence between sine and cosine functions.

Recall that the Fourier transform encodes phase alignment as the argument of its
complex-valued coefficients. This can be a significant advantage in analyzing signals
where phase relationships are important but not readily apparent in the time domain.
However, because the Fourier transform is a global operator, a phase shift of θ radians
may appear only as a rotation between complex coefficients. This manifests as two
frequency components at an angular difference of θ radians in the complex plane, telling
us that multiple phases are present but providing no information about when—or if—a
shift occurs.

The beauty of wavelet coherence lies in its ability to properly define these shifts. By
localising phase information in both time and scale, wavelet coherence can reveal exactly
when a phase shift occurs. This is crucial for determining causal relationships from the
frequency spread, and we will see applications of this in the next section.

Alternative Applications of the Coherence Model 47

5.2 Alternative Applications of the Coherence Model

The phase arrays contain incredibly valuable information when we are interested in the
relationship between our cycling elements. To pull an example from the playground of
econometrics, imagine we have a hypothesis that the markets of two commodities are
related somehow, and the price of the first has an effect on the price of the second.
Wavelet coherence is perfectly suited for this task because it tells us:

• When these commodities are tracking each other,

• At what frequencies the prices are cycling,

• The lag period between each cycle.

The New York Stock Exchange (NYSE) contains thousands of assets with prices
being updated every second. As an example, we take the time series data from Colgate-
Palmolive Co (CL) and Eversource Energy (ES), between June 7, 2024 and June 7, 2025,
sampling every day the stock market is open, totaling 250 days. These are the same two
tickers selected in by N. Picini [14] to show how oil futures follow the overall market.
The coherence between these two time series can be seen in Figure 5.3.

Figure 5.3: NYSE tickers ES and CL coherence with phases, June 2024 to June 2025.

Another domain with growing interest in wavelet coherence methodology is electroen-
cephalography (EEG). Coherence is widely used to study the dependencies between elec-
trodes measuring brain activity at specific regions, as seen in work by Ieracitano et al.
[16]. To demonstrate an example with EEG data2, we pull 60 seconds of brain activity of

2Data sourced from Subject 2, condition 253 of the semantic task with 5-subjects study on EEGLAB
[15].

48 Discussion

a research subject at the frontal midline (Fz) and parietal midline (Pz) electrodes. The
EEG data are displayed in Figure 5.4, and coherence results are displayed in Figure 5.5.

Figure 5.4: Fz (top) and Pz (bottom) electrodes measuring brain activity.

Figure 5.5: Coherence between brain activity at Pz and Fz electrodes.

What the results in Figures 5.3 and 5.5 imply specifically is contained within their
respective scientific domains, and thus meaningful interpretation remains outside the
scope of this work. Our motivation for applying the coherence model to these datasets
stems from the pre-existence of the aforementioned literature itself, in which coherence
is applied to such domains.

Computation 49

5.3 Computation

The wavelet transform of Section 2.5 is written entirely in the time domain. While
this is helpful for understanding how we arrive at our finalized time-frequency products,
the direct convolution is severely impractical. Equation (2.5.1) is often called the naive
implementation of CWT. The convolution of the discrete signal x(t) and a discretized
and time-localized wavelet function ψ(t) (both of length N) requires N2 computations,
so the compute time scales quadratically. Because we must produce this convolution at
each scale, the computational complexity of the naive implementation is written as:

O(S ·N2) (5.3.1)

Where S is the number of scales.
The naive implementation is easily improved upon by converting both the signal

and the wavelet into the frequency domain via FFT, then the two vectors can simply
be multiplied and sent back into the time domain by iFFT. To explore the savings in
computational complexity by this method, we follow these steps:

1. Compute the FFT of the signal x(t):

x̂ = FFT(x) Cost: O(N logN) (5.3.2)

2. For each scale si (i = 1, . . . , S):

(a) Generate the wavelet ψsi(t) at scale si, Cost: O(N)

(b) Compute the FFT of the scaled wavelet:

ψ̂si = FFT(ψsi) Cost: O(N logN) (5.3.3)

(c) Perform pointwise multiplication in the frequency domain:

ŵsi = x̂ · ψ̂si Cost: O(N) (5.3.4)

Note: ψ̂si and x̂ contain complex numbers.

(d) Compute the inverse FFT to obtain the convolution result:

wsi(t) = iFFT(ŵsi) Cost: O(N logN) (5.3.5)

3. Total cost over all scales:

O(N logN) (for signal FFT) +

S · [O(N) +O(N logN) +O(N) +O(N logN)] = O(S ·N logN) (5.3.6)

Additionally, the results of step 2-b can be easily precomputed and cached or ap-
proximated within the frequency domain without performing the full FFT at every scale.
Therefore, in any practical implementation of the FFT wavelet transform, virtually all of
the compute time is consumed by step 2-d, where we take the inverse Fourier transform
at each scale. The next section will discuss some recent findings that circumvent this last
step and accelerate the performance of the model used in this work.

50 Discussion

5.4 Performance

In 2022, researchers P.A. Arts and L. van den Broek published the Fast Continuous
Wavelet Transform (fCWT) algorithm, with dramatically positive ramifications for wavelet
transform computation. The fCWT enables the coherence model used in this work by
scaling down the amount of compute time required for long signals, focusing on the inverse
Fourier transform step in the FFT-based implementation of the wavelet transform.

To give an overly brief technical summary of what is going on in the background, this
efficient algorithm caches precomputed look-up tables of the iFFT and can apply strate-
gic downsampling to the time-frequency complex matrix prior to the scale dependent
operations, allowing large-scale reductions in overall computational complexity. A com-
prehensive explanation of the fCWT algorithm can be found in its original publication
in Nature Computational Science [10].

Figure 5.6: Efficiency comparison in memory usage. Top: increasing frequency resolution,
bottom: increasing number of samples. Legend: - Our model, - PyCWT benchmark.

Performance 51

To illustrate how much we can save by these techniques, we construct two signals that
are just pure noise at 8000 Hz SR, both similar to Signal b in section 4.4, and produce the
coherence matrix via our model, in parallel with the PyCWT library’s wavelet coherence
transform (WCT) method [22], which serves as a benchmark. We are interested in how
the efficiency is affected in both of our domains of interest, so we run two experiments:
Figure 5.4 shows how increasing resolution in the frequency and time domains affects the
memory usage.

Figure 5.7: Efficiency comparison in process time. Top: increasing frequency resolution,
bottom: increasing number of samples. Legend: - Our model, - PyCWT benchmark.

Figure 5.7 shows the same two experiments as above, only our metric is now processing
time instead of memory usage. These results closely replicate the performance findings in
the original fCWT publication, showing the large portion of coherence computation being
consumed by the supporting wavelet transforms. Additionally, the step-wise behavior
observed when increasing signal duration is a well documented phenomena in FFT based
implementations, which are most efficient at transforming signals whose input lengths
are 2n, n ∈ N. As a result, such algorithms will pad signals to the next power of 2 [21].

52 Discussion

5.5 Conclusion

This work set out to explore wavelet-based time-frequency decompositions to serve as
identifying fingerprints for traditional Irish music, for both live and symbolic inputs. By
transforming each data type into frequency spectra for analysis, we demonstrated that
wavelet coherence can be used to accurately identify recorded tunes by matching them
against a library of synthetically generated waveforms derived from ABC notation. This
approach was found to be efficient and reliable in a variety of instruments, although many
opportunities for model optimization remain.

Beyond music identification, this research demonstrates the flexibility of the coherence
model with clear applications in other domains. In EEG signal processing, wavelet coher-
ence between electrodes reveals patterns of brain connectivity across different regions. In
financial price fluctuation data, coherence can illuminate historic market co-movements
and lead-lag relationships between assets over time. These diverse applications highlight
the generality of the wavelet-based approach and suggest that the methodology outlined
here may be useful for other tasks in non-stationary environments.

Looking forward, we aim to apply the methods explored here as modules in larger
frameworks. This will involve interpreting the time series wavelet outputs as extracted
features to feed into artificial neural networks, or applying machine learning over the
coherence arrays to determine when coherence is meaningful and when it is random. This
mode of application for coherence is hypothesized to prove useful for anomaly detection as
well, where disparate coherent regions in the time-frequency space between null, unrelated
events can be flagged for further investigation.

Bibliography

[1] W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik
und Mechanik, Zeitschrift für Physik, vol. 43, no. 3-4, pp. 172–198, 1927.

[2] P.A.M. Dirac, The Principles of Quantum Mechanics, Oxford University Press, 1930.

[3] D. Hilbert, Foundations of Functional Analysis, Springer, 1953.

[4] U. Grenander, Probability and Statistics: The Harald Cramér Volume, Wiley, 1959.

[5] C. E. Shannon, Communication in the presence of noise, Proc. IRE, vol. 37, no. 1,
pp. 10–21, 1949.

[6] B. C. J. Moore, An Introduction to the Psychology of Hearing, 6th ed., Brill, 2012.

[7] C. Katsavrias, C. Papadimitriou, A. Hillaris, and G. Balasis, Application of Wavelet
Methods in the Investigation of Geospace Disturbances: A Review and an Evalua-
tion of the Approach for Quantifying Wavelet Power, Atmosphere 2022, 13, 499.
doi: 10.3390/atmos13030499, 2022.

[8] C. Torrence, and G. P. Compo, A practical guide to wavelet analysis, Bulletin of the
American Meteorological Society, 79(1), 61–78, 1998.

[9] D. Gabor, Theory of communication, Journal of the Institution of Electrical Engineers
- Part III: Radio and Communication Engineering, vol. 93, no. 26, pp. 429–457, 1946.

[10] L. P. A. Arts and E. L. van den Broek, The fast continuous wavelet transformation
(fCWT) for real-time, high-quality, noise-resistant time–frequency analysis, Nature
Computational Science, vol. 2, pp. 47–58, 2022.

[11] T. Konstantinovsky, Wavelet Transform: A practical approach to time-frequency
analysis, Medium, 2024.

[12] M. Chavez and B. Cazelles, Detecting dynamic spatial correlation patterns with
generalized wavelet coherence and non-stationary surrogate data, Scientific Reports,
vol. 9, p. 7389, 2019.

[13] M. Mc Gettrick and P. Mc Gettrick, The Kolmogorov complexity of Irish traditional
dance music, arXiv preprint arXiv:2407.12000 [cs.IT], 2024.

[14] N. Picini, Financialization and its impact on oil market volatility,
GitHub: 0zean/Wavelet Coherence, 2018.

[15] A. Delorme, and P. Ullsberger, Semantic task with 5 subjects, EEGLAB Wiki, 2020.

54 Bibliography

[16] C. Ieracitano, J. Duun-Henriksen, N. Mammone, F. La Foresta and F. C. Morabito,
Wavelet coherence-based clustering of EEG signals to estimate the brain connectivity
in absence epileptic patients 2017 International Joint Conference on Neural Networks
(IJCNN), Anchorage, AK, USA, pp. 1297-1304, doi: 10.1109/IJCNN.2017.7966002,
2017.

[17] A. Grinsted, J. C. Moore, and S. Jevrejeva, Application of the cross wavelet transform
and wavelet coherence to geophysical time series, Nonlinear Processes in Geophysics,
11(5/6), 561–566. doi: 10.5194/npg-11-561-2004, 2004.

[18] G. Weinreich, Coupled piano strings, Journal of the Acoustical Society of America,
vol. 62, no. 6, pp. 1474–1484, 1977. doi: 10.1121/1.381665, 1977.

[19] A. Dhawan, Bird Flight, New Delhi: Natraj Publishers, p. 26, 1982.

[20] C. J. Pennycuick, Predicting Wingbeat Frequency and Wavelength of Birds, The
Company of Biologists, J. exp. Biol. 150, 171-185, 1990.

[21] S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, Cal-
ifornia Technical Publishing, Chapter 12: The Fast Fourier Transform. ISBN: 0-
9660176-3-3, 1997.

[22] S. Krieger and N. Freij, PyCWT: wavelet spectral analysis in Python, Version 0.4.0-
beta, Python, GitHub: regeirk/pycwt, 2023.

[23] MathWorks, Compare Time-Frequency Content in Signals with Wavelet Coherence,
MATLAB Documentation, Version R2025a, The MathWorks, Inc., 2025.

[24] B. Duggan, Machine annotation of traditional Irish dance music, Technological Uni-
versity Dublin, Section 1.3, doi:10.21427/D7HC79, 2009.

[25] J. Keith, The Session: Traditional Music Archive, TheSession.org, 2025.

Appendix A

Code

Python printouts of several key functions for the
tune identification model.

A.1 Coherence

1 import numpy as np

2 import fcwt

3 from scipy.ndimage import gaussian filter

4

5 def smooth(data , sigma=(2, 2), mode=’nearest ’):

6 return gaussian filter(data , sigma=sigma , mode=mode)

7

8 def wavelet coherence(signal1 , signal2 , highest , lowest , nfreqs ,

frame rate , window =(2, 2)):

9 freqs , coeffs1 = fcwt.cwt(signal1 , frame rate , lowest ,

highest , nfreqs , nthreads =4)

10 freqs , coeffs2 = fcwt.cwt(signal2 , frame rate , lowest ,

highest , nfreqs , nthreads =4)

11

12 # Squared modulus of wavelet coefficients

13 S1 = np.abs(coeffs1) ** 2

14 S2 = np.abs(coeffs2) ** 2

15 xwt = coeffs1 * np.conj(coeffs2)

16

17 numerator = np.abs(smooth(S12)) ** 2

18 denominator = smooth(S1) * smooth(S2)

19

20 # Prevent division by zero

21 coherence = np.zeros like(numerator)

22 nonzero = denominator > 0

23 coherence[nonzero] = numerator[nonzero] /

denominator[nonzero]

24

25 return coherence , freqs , xwt

Listing A.1: Wavelet Coherence Computation.

56 Code

To compute the wavelet transforms seen in this work, we can use the seamlessly
integrated fcwt python implementation, as shown in Listing A.1. This import runs
all computations in C++ on the back-end. This function returns the coherence array,
a vector of frequencies, and the cross-wavelet transform, saved as the object xwt, as
mentioned in Section 5.1.

A.2 Musical Note Generators

Given a frequency and a sampling rate, we can use the following function to generate a
sine wave to match our desired duration of the note. If the envelope is requested, this
can be controlled with the boolean envel. More information on envelopes will be found
in the next section.

1 def sine note(frequency , duration , sample rate ,envel = True):

2 t = numpy.linspace(0, duration , int(sample rate * duration),

endpoint=False)

3

4 # Fundamental frequency

5 wave = numpy.sin(2 * numpy.pi * frequency * t)

6 adsr = [0.01, 0.2, 0.2, 0.7]

7 adsr = [adsr [0]]+[(duration -adsr [0])*(x/sum(adsr [1:])) for x

in adsr [1:]]

8 # ADSR envelope (if desired)

9 envelope = adsr envelope(adsr[0],adsr[1],adsr[2],adsr[3],.7,

sample rate , duration)

10 if envel:

11 wave *= envelope

12

13 # Normalize wave

14 wave = wave / numpy.max(numpy.abs(wave))

15

16 return wave

Listing A.2: Sine note generator function

To better simulate the sound of a real instrument, we can add the second, third, and
fourth harmonics—along with some non-linearity—based on the harmonic profile of a
piano.1

1From Weinreich [18]: “Measured Steinway D-274 spectra show the 2nd harmonic at –4 dB (≈ 0.6×),
the 3rd at –8 dB (≈ 0.4×), and the 4th at –14 dB (≈ 0.2×) relative to the fundamental.”

Musical Note Generators 57

1 def piano note(frequency , duration , sample rate):

2 t = numpy.linspace(0, duration , int(sample rate * duration),

endpoint=False)

3

4 # Fundamental frequency

5 wave = numpy.sin(2 * numpy.pi * frequency * t)

6

7 # Harmonics

8 wave += 0.6 * numpy.sin(2 * numpy.pi * 2 * frequency * t) #

Second harmonic

9

10 wave += 0.4 * numpy.sin(2 * numpy.pi * 3 * frequency * t) #

Third harmonic

11

12 wave += 0.2 * numpy.sin(2 * numpy.pi * 4 * frequency * t) #

Fourth harmonic

13

14 # Harmonic non -linearity

15 wave += 0.05 * (wave **3)

16

17 # ADSR envelope

18 adsr = [0.01, 0.2, 0.2, 0.7]

19 adsr = [adsr [0]]+[(duration -adsr [0])*(x/sum(adsr [1:])) for x

in adsr [1:]]

20

21 envelope = adsr envelope(adsr[0],adsr[1],adsr[2],adsr[3],.7,

sample rate , duration)

22 wave *= envelope

23

24 # Slight noise

25 wave += 0.001 * numpy.random.normal(-1, 1, len(wave))

26

27 # Normalize wave

28 wave = wave / numpy.max(numpy.abs(wave))

29

30 return wave

Listing A.3: Piano note generator function.

We can also simulate other instruments that are more popular in Irish music than the
piano. The code below shows the generator for the tenor banjo, which contains overtones
all the way through the sixth harmonic, a slightly detuned addition to the wave, and
a much shorter attack in the ADSR envelope. Lines 8-12 specifically dictate how much
each harmonic frequency contributes to the waveform.

58 Code

1 def banjo note(frequency , duration , sample rate):

2 t = numpy.linspace(0, duration , int(sample rate * duration),

endpoint=False)

3

4 # Fundamental frequency

5 wave = numpy.sin(2 * numpy.pi * frequency * t)

6

7 # Add harmonics

8 wave += 0.7 * numpy.sin(2 * numpy.pi * 2 * frequency * t) #

Second harmonic

9 wave += 0.5 * numpy.sin(2 * numpy.pi * 3 * frequency * t) #

Third harmonic

10 wave += 0.3 * numpy.sin(2 * numpy.pi * 4 * frequency * t) #

Fourth harmonic

11 wave += 0.2 * numpy.sin(2 * numpy.pi * 5 * frequency * t) #

Fifth harmonic

12 wave += 0.1 * numpy.sin(2 * numpy.pi * 6 * frequency * t) #

Sixth harmonic

13

14 # Slight detuning for resonance

15 wave += 0.1 * numpy.sin(2 * numpy.pi * 1.01 * frequency * t)

16 wave += 0.08 * numpy.sin(2 * numpy.pi * 0.99 * frequency * t)

17

18 # Nonlinearity for brightness

19 wave += 0.2 * (wave **3)

20

21 # Banjo ADSR envelope

22 adsr = [0.003 , 0.08, 0.02, 0.1]

23 adsr = [adsr [0]] + [(duration - adsr [0]) * (x /

sum(adsr [1:])) for x in adsr [1:]]

24 envelope = adsr envelope(adsr[0], adsr[1], adsr[2], adsr[3],

0.2, sample rate , duration)

25

26 wave *= envelope

27

28 # Normalize wave

29 wave = wave / numpy.max(numpy.abs(wave))

30 return wave

Listing A.4: Banjo note generator function

Envelopes 59

A.3 Envelopes

The following Python function generates an ADSR (attack, decay, sustain, release) enve-
lope for shaping audio signals. To call this, and all other functions in this appendix, the
numpy library must be imported.

1 def adsr envelope(attack , decay , sustain , release ,

sustain level , sample rate , duration):

2

3 total samples = max(1, int(sample rate * duration))

4

5 attack samples = max(1, int(sample rate * attack))

6

7 decay samples = max(1, int(sample rate * decay))

8

9 release samples = max(1, int(sample rate * release))

10

11 sustain samples = max(1, total samples - attack samples -

decay samples - release samples)

12

13

14 # Envelope phases

15 attack curve = numpy.linspace(0, 1, attack samples)

16

17 decay curve = numpy.linspace(1, sustain level , decay samples)

18

19 sustain curve = numpy.ones(sustain samples) * sustain level

20

21 release curve = numpy.linspace(sustain level , 0,

release samples)

22

23 # Concatenate phases

24 envelope = numpy.concatenate ([attack curve , decay curve ,

sustain curve , release curve])

25

26 return envelope [: total samples]

Listing A.5: ADSR envelope function

60 Code

A.4 The Session Database

The following code shows how we use SQL queries within a Python environment to pull
tunes from thesession.org. The database file contains a table for tune information linked
to a separate table for aliases. With the knowledge that popular tunes often go by many
names, we want to be able to pull tunes by relevant aliases listed on The Session.

1 import sqlite3

2 import pandas as pd

3

4 conn = sqlite3.connect(’thesession.db’)

5

6 tunes = pd.read sql query("SELECT * FROM tunes", conn)

7

8 aliases = pd.read sql query("SELECT * FROM aliases", conn)

9

10 conn.close()

11

12 # will preprocess string before feeding it into initializer

13 def initializer(name ,setting):

14 # should return lowest setting , can request higher settings

later

15 matched = tunes[tunes[’name’]. apply(preprocess string) ==

name]

16 if matched.empty == False:

17 matched = matched.set index(’setting id’)

18 matched.index = range(1,len(matched)+1)

19 return matched.loc[setting], len(matched)

20 else:

21 id =

int(aliases[aliases[’alias’]. apply(preprocess string)

== name][’tune id’].iloc [0])

22 matched = tunes[tunes[’tune id’] == str(id)]

23 matched.index = range(1,len(matched)+1)

24

25 return matched.loc[setting], len(matched)

26

27 def get abc(name ,setting):

28 matched = tunes[tunes[’name’] == name]

29 matched = matched.set index(’setting id’)

30 matched.index = range(1,len(matched)+1)

31

32 return [matched[’abc’][setting],matched[’mode’][setting]]

Listing A.6: Code to pull tune data and metadata from The Session’s Database.

Appendix B

Additional Products

Relevant information that does not fit in the
principal opus.

B.1 Cone of Influence

As the wavelet convolves near the boundaries of the signal, it becomes necessary to
compute values at timesteps where the wavelet is partially outside the available time
range. To maintain a consistent number of timesteps at each scale—and thus produce
a rectangular resolution in the wavelet transform—we must pad the edges of the signal
with zeros. This ensures that even the lowest-frequency wavelets, which are the widest
in time, have the same number of valid steps as the highest-frequency wavelets.

At the low frequencies, this results in some ”junk” frequencies being detected, as the
wavelet is partially over the signal and partially over the padding. The regions in the
wavelet transform where this takes effect are said to be outside of the cone of influence.
To see how the cone of influence affects our interpretation of the coherence results, take
a look at the stationary Signals A and B in Figure B.1. Signal A is the summation of a
sine wave at 30 Hz and a cosine wave at 75 Hz, while Signal B is the inverse of A, with
the sine contribution at 75 Hz and the cosine at 30 Hz.

Figure B.1: Signals A and B.

For a quick description, this should result in two stripes across our spectrograms at
the corresponding frequencies. At 75 Hz, the phase should be −π/2 radians, as the cosine
of Signal A leads the sine of Signal B. Conversely, the 30 Hz stripe should reflect a phase

62 Additional Products

of π/2 radians. This is what is shown in Figure B.2. The COI has a much heavier effect
on the 30 Hz stripe as it is produced by a bulkier wavelet, causing the extent of the phase
arrows to shrink in this region.

Figure B.2: Signals A and B Coherence.

To see a real world coherence example with the COI applied, examine Figure B.3.
Here, we have the data of sea surface temperature (SST) anomalies in El Niño Region 3
(Niño 3), compared with the All-India Rainfall Index (AIRI), which is a typical proxy for
monsoon performance in the Indian subcontinent. Both variables are sampled monthly
from 1871 to 2003.

Figure B.4 shows the coherence between Niño 3 SST anomalies and AIRI (note that
period lies on the y-axis in place of frequency, so the picture is upside-down when com-
pared to previous figures). The plot reveals 2 bursts of wavelet coherence at periodicities
between 2 and 7 years — the typical El Niño range. These coherent bands exhibit a
consistent phase lag of about 3π/4 to π radians, indicating a delay of about 1 to 3.5
years between periods of sea warming in the equatorial Pacific, measured off the coast of
South America, and monsoon rainfall over India. Despite the roughly 17,000 km separa-
tion, this suggests a large-scale correlation of oceanic temperature anomalies preceding
atmospheric response by roughly 1 to 3.5 years.

The white dashed line overlaying Figure B.4 indicates the COI, underneath which
the coherence coefficients are a valid representation of the co-movement between the SST
anomalies and AIRI1.

1The data and results in Figures B.3 and B.4 are sourced from the MATLAB Help Center’s ”Compare
Time-Frequency Content in Signals with Wavelet Coherence” example [23].

Cone of Influence 63

Figure B.3: Niño 3 – SST anomalies (Top) and deseasonalized AIRI (Bottom).

Figure B.4: Niño 3 and AIRI coherence array.

64 Additional Products

B.2 Uncalibrated Coherence Results

Figure B.5: Uncalibrated results of Control a.

For each coherence bar plot presented
in this work (Figures 4.2, 4.4, and
4.10), the results have been calibrated
relative to the tune with the lowest co-
herence value. This means that we
have subtracted the coherence of the
least coherent tune from all others, ef-
fectively zooming in on the relevant
differences between the selected tune
and the rest of the field.

One consequence of this calibra-
tion method is that it can make some
tunes appear disproportionately ad-
vantaged when analyzing biases using
control data. Figure B.5 displays the
uncalibrated results from Control a,
where we observe that all tunes yield
roughly similar coherence values when
paired with the blank signal.

While it is not so obvious which
tunes carry an advantage for selection
by the identification model, we can
see that some tunes show quite lit-
tle contribution to the coherence with
the empty signal. These tunes include
The Bird in the Bush, Father Kelly’s
Reel, Molly Bán, The Pretty Girls of
Mayo, and Tommy People’s Reel.

	Introduction
	Overview
	Traditional Irish Music as a Case Study
	Definitions and Terms

	Background
	Motivation for Dynamic Decomposition of Time Series Data
	Waveforms and the Fourier Transform
	Sound, Music, and Frequency Analysis
	Time-Frequency Decompositions of Sound
	The Continuous Wavelet Transform

	Methodology
	Data Description
	Symbols and Waveforms
	Wavelet Transform Implementation
	Wavelet Coherence and Pattern Matching

	Results
	Spectrogram Fingerprinting
	Prediction Accuracy
	Instrumentation
	Tune Biases

	Discussion
	Phase
	Alternative Applications of the Coherence Model
	Computation
	Performance
	Conclusion

	Code
	Coherence
	Musical Note Generators
	Envelopes
	The Session Database

	Additional Products
	Cone of Influence
	Uncalibrated Coherence Results

