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Abstract—The Coherent Multiplex is formalized and validated
as a scalable, real-time system for identifying, analyzing, and
visualizing wavelet coherence among multiple time series. Its
architecture comprises a fast spectral similarity layer based on
cosine similarity metrics of Fourier-transformed signals, and a
sparse time-frequency layer for wavelet coherence. The system
constructs and evolves a multilayer graph representing inter-
signal relationships, enabling low-latency inference and monitor-
ing. A simulation prototype demonstrates functionality across 8
synthetic channels with a high similarity threshold for further
computation, with additional opportunities for scaling the archi-
tecture up to support thousands of input signals with constrained
hardware. Applications discussed include neuroscience, finance,
and biomedical signal analysis.

Index Terms—Wavelet coherence, signal processing, fast
Fourier transform, cosine similarity, graph architecture, time-
frequency analysis, data streams, feature extraction, multi-layer
networks, high-dimensional data, streaming analytics, edge com-
puting.

I. INTRODUCTION

Understanding and employing wavelet coherence methods
between two signals has been increasing in popularity in
fields like neuroscience, finance, geophysics, and communica-
tions, where uncovering time-dependent relationships between
non-stationary signals can reveal underlying mechanisms and
obscured correlations. Conventional approaches to coherence
analysis are limited to high-level programming languages,
run outdated transforms, and are incapable of handling high-
volumes or real-time data streams efficiently. The Coherent
Multiplex overcomes these challenges by offering a rapid and
scalable solution for live coherence tracking, allowing users
to explore frequency- and time-dependent interactions with
greater speed and precision.

By leveraging recent algorithms and optimized computing
frameworks in the Fastest Fourier Transform in the West
(FFTW) [1] and the Fast Continuous Wavelet Transform
(FCWT) [2], the Multiplex significantly reduces the processing
time required for coherence analysis, making it suitable for
time-dependent and large-scale applications. This innovation,
combined with the living multilayered network architecture,
enables researchers and industry professionals to efficiently
monitor and investigate dynamic signal relationships as they
evolve, supporting new opportunities in data-driven decision
making and responsive system design across diverse scientific
and industrial domains.

II. RELATED WORK

Wavelet coherence has been applied in neuroscience [3],
econometrics [4], and climatology [5] to study dynamic re-
lationships between nonstationary signals. Traditional imple-
mentations rely on post-hoc analysis of recorded signals, using
tools contained in MATLAB, R, or Python environments.
These packages emphasize flexibility but are not designed for
streaming or high-throughput applications, and their computa-
tional costs make them impractical for monitoring at scale.

Real-time coherence monitoring is less common. Systems
such as [6] support streaming magnitude-squared coherence
(MSC) in specialized domains such as brain—computer inter-
faces (BClIs), but this is a much more superficial metric than
wavelet coherence. Other streaming signal analysis tools, like
LabStreamingLayer [7], focus on synchronization and data
collection rather than coherence analysis.

Network representations of signal similarity are also estab-
lished in neuroscience and finance, where pairwise correlations
or coherence values are used to construct functional connectiv-
ity or market dependency graphs. However, these approaches
are typically retrospective, relying on fully collected datasets.
To our knowledge, no existing technology offers an integrated
pipeline for continuous ingestion, transformation, and multi-
layered network construction of FFT and wavelet coherence
with the extensibility and modularity of the Multiplex.

III. SYSTEM OVERVIEW

1) The pipeline supports flexible signal ingestion through
APIs or direct connections to monitoring devices. This
allows users to seamlessly integrate diverse data sources,
whether signals are generated internally or are continu-
ous real-world data streams.

2) To efficiently analyze signals in the frequency domain,
Coherent Multiplex employs fast Fourier transforms
computed simultaneously using optimized libraries. This
approach ensures rapid processing of high-throughput
data streams, facilitating immediate insight into the
spectral characteristics of each signal.

3) A multilayered graph network is constructed to represent
the complex relationships among signals. Each node
corresponds to an individual signal, and edges denote the
strength of coherence or similarity between them. This
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layered structure supports exploration at multiple levels
of granularity and aids in visualizing interdependencies.

4) Cosine similarity metrics are calculated pairwise be-
tween FFT magnitude vectors in the frequency domain.
This measurement quantifies the alignment of spectral
content between signals, serving as a computationally
efficient heuristic to identify pairs exhibiting potential
coherence, which can then be further analyzed.

5) Additional edges between nodes will grow and decay
based on cosine similarity. These edges contain wavelet
coherence arrays that are updated at a subsampled in-
terval because of prohibitive cost. Utilizing continuous
wavelet transforms, this method provides detailed time-
frequency resolution, revealing dynamic and transient
coherent interactions between signals that evolve over
time.

6) An interface dashboard presents a visualization suite
including time-domain signal plots, FFT spectra, net-
work graphs illustrating signal relationships, and wavelet
coherence heatmaps. These elements can be monitored
with live updates delivered via server-sent events.

IV. METHODOLOGY
A. Signal Buffering

We consider M discrete-time signals sampled at frequency
fs, each represented by a sliding buffer of length N:
X;=|xin—N+1],...,2;n]|, i=1,...,M.
Each buffer contains the most recent N samples up to and
including the current time n, ensuring causality for real-time
processing.

These buffers are arranged into a data matrix D € RM*N,
where

zin—=N+1 z1[n—-N+2] ... xn]

xa[n—N+1] xz3[n—N+2] ... x3n]
D = : . :

xM[n—.N—{—l] xM[n—.N+2] xp(n]

This matrix serves as the input for subsequent frequency-
domain analysis.

B. Spectral Cosine Similarity

We apply the Discrete Fourier Transform (DFT) to each
real-valued signal buffer to obtain its frequency-domain rep-
resentation. For each X; € RN, define:

N-1
Filk] = > Xi[n]e ®™3*/N k=0,...,N -1

n=0

Where j = +/—1. Since each X; is real, its DFT exhibits
Hermitian symmetry: F;[N — k] = F;[k]. As a result, the
spectral content is fully captured in the first L = % +1
frequencies (assuming N even), and we discard redundant
components.
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The truncated frequency vectors are stacked into a matrix
F € CM*L where each row corresponds to the spectrum of
one signal.

Parseval’s identity ensures energy is preserved across do-
mains, so we compute cosine distance directly in the frequency
domain:

T AIE - E

This yields a symmetric similarity matrix S € RM*M

Here, (F;, F}) = Zi\;lFi [k] F;[k] denotes the standard
inner product of the frequency-domain vectors, and ||F;|| =
(F};, F;) is the corresponding Euclidean (¢5) norm.

C. Exploratory Network

The pairwise cosine similarity matrix S € RM*M defines
a weighted, undirected graph G = (V, E1, W7), where each
vertex v; € V' corresponds to a signal ¢, and each edge ¢;; €
E4,i # j represents the spectral similarity between signals ¢
and j. Specifically, edges are assigned weights based on the
similarity function

Wl(ivj) = d(i,j)7

where d(i,j) reflects the cosine similarity between the
frequency-domain representations of signals ¢ and j. A value

d(i, j) € 10,1,

of d(i,j) = 1 indicates maximal similarity (i.e., parallel
vectors in the spectral space), while d(i,7) = 0 indicates
orthogonality.

By construction, G5 is a fully connected (complete) graph,
capturing all pairwise relationships among the M signals.
This graph provides a compact and interpretable structure for
understanding global spectral relationships within the dataset.
The weight matrix W; can be interpreted as a similarity kernel,
suitable for downstream tasks such as clustering, dimension-
ality reduction, or community detection. Fig. 1 displays an
example where M = 6.

OO

® O

® ©

Fig. 1. Combined network showing two layers for a six-signal dataset. Fully
connected layer G (gray edges) represents pairwise spectral similarity, while
sparse layer G2 (orange edges) contains coherence arrays.
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D. Depth Layer

To capture time-localized, frequency-specific relationships
between signals, we construct a second, sparse network layer
Go = (V, B9, W5) where edges represent wavelet coherence.

Given a time series x, its wavelet transform [8] is defined

W) = 3 o) 5 ("),

n=0

as

where 1 is a complex-valued mother wavelet, s is the scale
parameter (related to frequency), and ¢ is the time index.

The wavelet coherence [5] between signals x; and x; at
time ¢ and scale s is

N2
]s (Witt, ) - Wi, s))‘
Cij (ta 5) = )
S (Wit s)?) - S (IW;(t, 5)1?)
where S(-) is a smoothing operator in time and scale, and
C’ij(t,s) € [0, 1]
Edges in G2 exist only between pairs of signals with
coherence exceeding a threshold 6 € [0, 1], so

€ij € FEy <~— Wl(l,j) > 0,
and the corresponding edge weight is
W2(i7 .7) = CZ] (tv S).

This sparsification ensures G5 highlights significant lo-
calized interactions, modulated by the spectral similarities
encoded in Gy. For example, if edges (4,C), (C,E), and
(A, E) have weights above 6, the resulting layer G appears
alongside G in Fig. 1.

V. COMPUTATION & PERFORMANCE

We denote the number of signals by M, the buffer length
(samples) by N, the number of retained FFT bins by L =
|N/2]| + 1, and the number of wavelet scales by Q.

A. Pipeline Steps and Costs (Per Update)

1) Signal buffering: Append the newest sample into cir-
cular buffers of length N. Time complexity is O(1)
per signal (circular buffer) or O(M) if all buffers are
touched. Memory: O(M N) samples.

2) FFT: Per signal: O(NlogN) using an FFT library
(FFTW). All signals: O(M N log N). With real input,
only L bins are needed downstream.

3) Magnitude / feature extraction: Extract magnitudes
from each FFT output: O(ML).

4) Pairwise cosine similarities: Naive: (1‘2/1 ) dot products
of length L, giving O(M?L). Norms: O(M L). Similar-
ity matrix storage: O(M?).

5) Candidate selection / sparsification: Threshold S to
produce K candidate edges with Wy (i, 5) > 0: O(M?).

6) Continuous wavelet transform: FFT-based CWT at ()
scales: O(Q N log N) per signal. If only P signals are
active candidate pairs, the cost is O(P Q N log N).

7) Wavelet coherence: Given W;, W; € C@*¥, coherence
computation is O(QN).
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Fig. 2. CPU-time comparison. Top: increasing frequency resolution; bottom:
increasing number of samples. Legend: m - Our model, m - PyCWT benchmark.

While FFTs and cosine similarity computations scale to
thousands of signals in real time, wavelet coherence is com-
puted selectively on candidate pairs filtered by the similarity
threshold. This design allows the architecture to scale up to
large corpora while limiting the computation expenditure at
the coherence.

B. Benchmarking

Compute time for FFT and cosine similarity metrics is
well-documented at scale, and the multiplex does not rely on
novel implementations for these steps. Our contribution lies
in a novel implementation of the coherence layer. To evaluate
its performance, we measure the compute time required to
generate coherence arrays for signal pairings across varying
sample sizes and scale resolutions.

We empirically compare our implementation against the
PyCWT library’s wavelet coherence transform (WCT) [9]
using two synthetic noise signals sampled at 8 kHz. Fig. 2
shows the impact of increasing frequency and time resolution
on CPU runtime. The results here closely mirror the efficiency
gains reported in the original FCWT publication [2], which
provides a detailed explanation of the origin of these perfor-
mance gains. The FCWT algorithm replaces PyCWT as the
wavelet transform engine behind our coherence layer. Note the
step-wise behavior observed with increasing signal duration is
characteristic of FFT-based methods, which are most efficient
for input lengths of 2", n € N [10].

VI. SYSTEM IMPLEMENTATION

To evaluate the Coherent Multiplex pipeline, a full simu-
lation and analysis environment has been implemented [11].
The repository contains the full implementation, enabling
reproducibility of the results and figures presented here. The
following subsections describe each stage of the prototype,
along with representative figures.
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Fig. 3. 8 signal streams are monitored over a rolling window. Signals are
labeled A-H, and color coded for identification.

A. Signal Generation

Incoming data is procedurally generated to show signals that
come in and out of covariance. 8 input signals are synthesized
as linear combinations of sine waves with randomized ampli-
tudes, frequencies, and phases. This approximates the behavior
of non-stationary real-world signals. Coherence is artificially
introduced between selected pairs by sharing frequency com-
ponents or phase structure at randomized intervals.

Signals are processed continuously using a rolling buffer,
and maintain a window of 256 samples. The model is set to
produce and advance by one sample each centisecond, and
displays the signals as shown in Fig. 3.

B. Spectral Feature Extraction

For each update, the FFT is computed using a fast backend
with pre-aligned reusable memory buffers. This implementa-
tion imports the FFTW C subroutine, which will enable scaling
up. The magnitude spectra of the FFT results are extracted and
used to compute pairwise cosine similarity. The real part of the
FFT results are displayed in the frequency domain, as shown
in Fig. 4.

C. Graph-based Similarity Modeling

A fully connected network is made to represent the 8
signals as nodes, and the edges between nodes are weighted
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Fig. 4. Fourier magnitude spectra of each signal at a given time step. Pairwise
cosine similarities are computed between rows.

by the cosine similarity between the corresponding signals’
frequency-domain vectors. This network serves as the first
layer of analysis, allowing visualization of potential coherence
relationships and identification of candidate pairs for further
analysis.

A wider, darker edge indicates a small angle between the
two nodes that it connects. At the timestep that Fig. 3 was
captured, the highest similarities were between pairs A-E, A-
H, and E-H, which is reflected by the darkest edges linking
nodes A, E and H in Fig. 5.

D. Wavelet Coherence Analysis

For deeper analysis in time and frequency relationships,
wavelet coherence is selectively computed between the pair
exhibiting the highest similarity at each update. Transform
arrays are efficiently computed via the FCWT algorithm for
each signal, and coherence is evaluated in the time-frequency
domain. Visualizations in this implementation, like the one
shown in Fig. 6, include phase arrows indicating lead/lag re-
lationships, but ignore the cone of influence, which is overlaid
on many coherence visualizations for masking of boundary
effects.
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Fig. 5. Cosine similarity graph. Nodes represent signals; edge weights
represent similarity. All possible pairs are connected. Node labels A through
H begin at 3 o’clock and are indexed counter-clockwise.

VII. DISCUSSION
A. Applications

Wavelet coherence, while initially developed for studying
long-term climate phenomena such as the El Nifio-Southern
Oscillation and monsoon activity [8], has been adopted across
a wide range of disciplines. Notable applications include:

1) Economics: Wavelet coherence is used to explore dy-
namic relationships among financial time series, includ-
ing equities, foreign exchange rates, and macroeconomic
indicators. It allows detection of transient co-movements
and structural breaks that are not captured by stationary
models.

2) Neuroscience: The technique is widely applied to elec-
troencephalogram (EEG) and magnetoencephalogram
(MEG) data to assess time-varying functional connec-
tivity between regions of the brain, aiding research into
cognition, neurological disorders, and stimuli response.

3) Biomedical and Physiological Signal Analysis: Co-
herence metrics are employed to evaluate interactions
between biological signals such as heart rate variability
and respiration, providing insights into autonomic regu-
lation and disease progression.

In these domains, the number of signals to be compared
often exceeds the capacity of conventional coherence algo-
rithms. For instance, EEG studies may involve 128 to 512
electrodes, while financial platforms such as New York Stock
Exchange National maintain and update the prices of over
8000 listed securities. Traditional pairwise coherence analysis
would be immediately ruled out on the basis of prohibitive
computational expense.

The presented architecture overcomes these limitations by
employing a computationally efficient multiplexing approach
that scales to high-dimensional input. The system is adaptable
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to constrained hardware environments, and the current proto-
type operates effectively on a dual-core virtual machine with
3.5 GB RAM, demonstrating both portability and performance.
These characteristics render the design suitable for real-world
deployments in low-cost or embedded systems, as well as for
high-throughput research applications.

B. Future Work and Extensions

The described system architecture is designed to support
a wide range of modifications and extensions without com-
promising the integrity or performance of its core operations.
Potential enhancements include the following:

1) Alternative Similarity Heuristics: The cosine similar-
ity metric can be substituted for alternative measures of
signal correlation beyond cosine similarity, given com-
putational allowance. Examples include Pearson corre-
lation [12], phase-locking value (PLV) [13], MSC [14],
or Granger causality [15].

2) Real-Time Alerting Mechanisms: The framework can
incorporate rule-based or model-based alert systems to
trigger notifications when coherence metrics exceed or
fall below predefined thresholds. These alerts can be
used for anomaly detection, early warning systems, or
to trigger downstream processing [16].

3) Substitution of Wavelet Coherence: In use cases where
scale-invariance is not required, the wavelet coherence
module may be substituted with the cross-wavelet trans-
form [5], short-time Fourier transform (STFT) [17], or
any comparable time-resolved transform method.

4) Stacked and Parallel Processing Layers: The system
can be extended with multiple sequential or parallel
processing layers. For instance, wavelet coherence out-
puts may be jointly evaluated alongside macroeconomic
indicators, trend models, or biomedical state variables to
augment signal classification or correlation.

5) Adaptive Thresholding via Resource Monitoring: Dy-
namic adjustments can be made to similarity thresholds
based on monitoring of hardware resources such as CPU
load, memory usage, or latency. This allows graceful
degradation or scaling of analysis intensity to maintain
responsiveness under constrained conditions.

6) Significance Testing: An additional processing layer
that implements statistical significance testing, such as
through non-stationary surrogate data [18], can be in-
tegrated. This layer would serve to robustly validate
detected coherence patterns, improving the reliability of
real-time inferences without affecting the core process-
ing pipeline [5], [8].

7) Neural Network Extensions: Deep learning modules
such as recurrent neural networks (RNNs) [19] or graph
neural networks (GNNs) [20] may be appended to
the multiplex to facilitate the automated interpretation,
classification, and annotation of coherence dynamics.

These modifications are intended to enhance system’s adapt-

ability across a range of application domains, including mon-
itoring systems, embedded hardware deployments, and large-
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Fig. 6. Wavelet coherence analysis between selected signal pairs. High-coherence regions and phase arrow vectors are visible.

scale analytical platforms. The underlying modular design of
the Coherent Multiplex framework ensures that such modi-
fications can be integrated with minimal impact on system
stability or core functionality.

VIII. CONCLUSION

We have presented the Coherent Multiplex, a scalable
framework for analyzing wavelet coherence in large-scale
multivariate time series. By combining spectral similarity
filtering with wavelet coherence analysis within a graph-
based architecture, the system efficiently captures dynamic
relationships across signals. Its modular design ensures ex-
tensibility and adaptability, making it well-suited for diverse
application domains such as neuroimaging, financial monitor-
ing, and physiological signal tracking. Future work will focus
on integrating significance testing, adaptive thresholding, and
machine learning techniques to further enhance performance
and reliability.
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