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Abstract

The Coherent Multiplex is a real-time signal analy-
sis and visualization platform designed to identify
and monitor coherent relationships among multi-
ple time series signals. By combining fast Fourier
analysis, wavelet coherence, and interactive graph
representations, the Multiplex enables efficient ez-
ploration of dynamic interactions in live signals.
This whitepaper introduces the system architecture,
core methodology, current prototyping efforts, and
potential applications in research, trading, and live
monitoring. Possibilities and goals for future direc-
tions with the Multiplex are also discussed.

1. Introduction

Understanding and employing wavelet coherence
between signals is becoming increasingly popu-
lar in fields like neuroscience, finance, geophysics,
and communications, where uncovering relation-
ships between signals can reveal underlying mecha-
nisms and patterns. Conventional approaches to
coherence analysis are limited to high-level pro-
gramming languages, run outdated transforms, and
are incapable of handling high-volumes or real-time
data streams efficiently. The Coherent Multiplex
overcomes these challenges by offering a rapid and
scalable solution for live coherence tracking, allow-
ing users to explore frequency- and time-dependent
interactions with greater speed and precision.

By leveraging advanced algorithms and opti-
mized computing frameworks in the Fuastest Fourier
Transform in the West (FFTW) [I] and the Fast
Continuous Wavelet Transform (FCWT) [], the
Multiplex significantly reduces the processing time
required for coherence analysis, making it suitable
for real-time and large-scale applications. This
innovation, combined with the living multilay-
ered network architecture, will enable researchers
and industry professionals to efficiently monitor
and investigate dynamic signal relationships as
they evolve, supporting new opportunities in data-
driven decision making and responsive system de-
sign across diverse scientific and industrial domains.

2. System Overview

The Coherent Multiplex absorbs, analyzes, and dis-
plays relationships among signals through several
key components described in this section and de-
tailed in the next.

Signal Ingestion

The platform supports flexible signal ingestion
through APIs or direct connections to monitoring
devices. This allows users to seamlessly integrate
diverse data sources, whether signals are gener-
ated internally or are continuous real-world data
streams, enabling comprehensive and timely anal-
ysis.

Real-Time Spectral Transform Compute

To efficiently analyze signals in the frequency do-
main, Coherent Multiplex employs fast Fourier
transforms computed in real-time using optimized
libraries. This approach ensures rapid processing of
high-throughput data streams, facilitating immedi-
ate insight into the spectral characteristics of each
signal.

Multilayered Graph Network

A multilayered graph network is constructed to
represent the complex relationships among signals.
Each node corresponds to an individual signal, and
edges denote the strength of coherence or similarity
between them. This layered structure supports ex-
ploration at multiple levels of granularity and aids
in visualizing interdependencies.

Pairwise Cosine Similarity Analysis

Cosine similarity metrics are calculated pairwise
between FFT magnitude vectors in the frequency
domain. This measurement quantifies the align-
ment of spectral content between signals, serving
as a computationally efficient heuristic to iden-
tify pairs exhibiting potential coherence, which can
then be further analyzed.



Selective Wavelet Coherence

Additional edges between nodes will grow and de-
cay based on cosine similarity. These edges contain
wavelet coherence arrays that are updated at a sub-
sampled interval because of prohibitive cost. Uti-
lizing continuous wavelet transforms, this method
provides detailed time-frequency resolution, reveal-
ing dynamic and transient coherent interactions be-
tween signals that evolve over time.

Interactive Dashboard

An interactive dashboard presents a comprehensive
visualization suite including time-domain signal
plots, FFT spectra, network graphs illustrating sig-
nal relationships, and wavelet coherence heatmaps.
These elements can be explored dynamically, sup-
ported by live updates delivered via server-sent
events, to gain actionable insights in real time.

3. Technical Outline

3.1. Incoming Data

A live signal can be represented as a real-valued
function of time:

z(t):R—R

where z(t) is defined only up to the present moment
to:

x(t), fort <t

A continuous-time signal x(t) sampled at a fre-
quency fs (in Hz) becomes:

x[n]x(JZ), nez

where f; is the sampling frequency (samples per
second), and n is the discrete time index. For the
real-time processing employed by the Multiplex, a
finite-length buffer is defined:

X[n]={zln—N+1],z[n— N +2],...,z[n]}

where N is the window size. Multiple signals are
indexed by i € {1,...,M}, each with its own
discrete-time sequence and buffer X;[n]. By align-
ing our signals in an M-dimensional vector, the full
datastream is represented in the N x M matrix D:

D =
z1[n—N+1] x1[n—N+2] x1[n]
xaln — N+1]  x3[n—N+2] xa[n]
xM[n—.N—l—l] zM[n—.N—l—Z] J:M[n]

3.2. Frequency Domain

To analyze the spectral properties of each signal,
a discrete Fourier transform (DFT) is applied row-
wise to the data matrix D. For a discrete-time sig-
nal X;[n|, its DFT over the window of size N is
defined as:

S Xifn) e, k=0,1,...,N -1

where f;[k] represents the complex frequency
component at bin k, and i is the imaginary unit.
This transform yields a frequency-domain represen-
tation of each signal, capturing its harmonic con-
tent within the sliding buffer. The entire frequency-
domain data across all M signals is represented by
the matrix F' € CM*N | where:

A0l fil] JilN —1]

f2[0]  fo[1] f2[N —1]
F= : : :

0] far[1] Su[N —1]

Each row corresponds to a signal’s frequency spec-
trum, and each column represents a particular fre-
quency bin across all signals.

Aslong as the incoming signal data is real-valued,
the Fourier values will exhibit Hermitian symmetry,
meaning:

X[kl=X[N—-k], k=1,2,...,N—1,
where T denotes the complex conjugate. This
symmetry implies that the frequency components
for positive frequencies uniquely determine those
for negative frequencies, allowing the Fourier trans-
form of a real signal to be fully represented by the
first L = {%J + 1 frequency bins (including the
zero-frequency and, if N is even, the Nyquist fre-
quency). Exploiting this property, matrix F' can be
safely reduced to F, € CM*L:

3.3. Cosine Similarity

To identify signal pairs with similar spectral pro-
files, Coherent Multiplex computes the pairwise co-
sine similarity between rows of the reduced fre-
quency matrix F,, € CM. Given two complex-
valued frequency vectors f; and f;, their cosine sim-
ilarity is defined as:

)
G = TRIAT

where (f;, f;) denotes the complex inner product:

God) = £l T
=0



and || f;]| is the Euclidean norm:

I1fell =

This metric yields a real-valued similarity score
between 0 and 1, where 1 indicates perfect spectral
alignment. The resulting vector of similarities is
defined as:

78p]a

where p = (1\2/1 ) is the number of unique unordered
signal pairs.

S =[s1,82,-...

3.4. Exploratory Network

The similarity vector S is used to construct a
fully connected graph to represent the relationships
among the M signals. Fach signal corresponds to a
node in the network, and every pair of nodes (i, j)
is connected by an edge weighted by the cosine sim-
ilarity score s(i, 7).

Formally, the network G =
as follows:

(V, E,W) is defined

o V = {1,2,...,M} is the set of nodes, each
representing a signal.

o E={(i,j) | i,j € V,i # j} is the set of edges
connecting every distinct pair of nodes.

e W: E —|0,1] assigns weights to edges, where
W(i,j) = s(i,j) is the cosine similarity be-
tween signals ¢ and j.

This weighted network layer encodes the spectral
similarity structure among signals, enabling subse-
quent layer construction.

3.5. Wavelet Coherence

To uncover time-localized, frequency-specific rela-
tionships between signals, the Coherent Multiplex
contains a second, sparse layer where the edges rep-
resent wavelet coherence.

To compute coherence, wavelet transform arrays
must be constructed for participating nodes. Given
a signal z, the wavelet transform [3] is computed as:

N-1 —
(69) = 3w ().

where 1 is a complex-valued mother wavelet, s is
the scale parameter (related to frequency), ¢ is the
time index, and ¥* denotes the complex conjugate.

The wavelet coherence [2] between signals x; and
x; is then defined as:

‘S (Wz(t

S (IWi(t, )[?) -

) W5E5)|

Cij(t,s) = S (IW;(t,s)2)’

where S(-) is a smoothing operator in both time
and scale, and the result satisfies 0 < Cj;(t,s) <
1. Edges of this layer are constructed and decay
based on the corresponding edge’s power from the
previous exploratory layer.

4. Prototyping

To evaluate the Coherent Multiplex pipeline, a full
simulation and analysis environment has been im-
plemented. The following subsections describe each
stage of the prototype, along with representative
figures.

4.1. Signal Simulation

Incoming data is procedurally generated to show
signals that come in and out of covariance. 8 in-
put signals are synthesized as linear combinations
of sine waves with randomized amplitudes, frequen-
cies, and phases. This emulates the complex, non-
stationary behavior of real-world signals. Coher-
ence is artificially introduced between selected pairs
by sharing frequency components or phase struc-
ture at randomized intervals.
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Figure 1: Signals A-H are color coded for easy
tracking.

Signals are processed in real-time using a rolling
buffer, and maintain a window of 256 samples. The
model is set to produce and kick one sample each
second.



4.2. Buffering and FFT Analysis

For each update, the FFT is computed using a fast
backend with pre-aligned reusable memory buffers.
This implementation imports the FETW C subrou-
tine, which will enable scaling up. The magnitude
spectra of the FFT results are extracted and used to
compute pairwise cosine similarity. This provides
a first-pass screening of potentially coherent signal
pairs based on their frequency-domain peaks.
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Figure 2: FFT magnitude spectra of each signal
at a given time step. Pairwise cosine similarities
are computed between rows.

4.3. Graph Construction

A fully connected network is made to represent the
8 signals as nodes, and the edges between nodes are
weighted by the cosine similarity between the cor-
responding signals’ frequency-domain vectors. This
network serves as the first layer of analysis, al-
lowing visualization of potential coherence relation-
ships and identification of candidate pairs for fur-
ther analysis.

A wider, darker edge indicates a small angle be-
tween the two nodes that it connects. At the
timestep that Figure [l was captured, the highest
similarities were between pairs A-E, A-H, and E-
H, which is reflected by the darkest edges linking
nodes A, E and H in Figure

Figure 3: Cosine similarity graph. Nodes repre-
sent signals; edge weights represent similarity. All
possible pairs are connected.

4.4. Wavelet Coherence

For deeper analysis in time and frequency relation-
ships, wavelet coherence is selectively computed be-
tween the pair exhibiting the highest similarity at
each update. Transform arrays are efficiently com-
puted via the FCWT algorithm for each signal,
and coherence is evaluated in the time-frequency
domain. Visualizations in this implementation in-
clude phase arrows indicating lead /lag relationships
but ignore the cone of influence, which masks re-
gions that are unreliable.

5. Applications

Though originally developed for examining multi-
decade correlations between the El Nino-Southern
Oscillation and monsoon activity in South Asia [3],
wavelet coherence has been applied broadly across
numerous domains.  Applications with interest
in these time-frequency relationships include eco-
nomics, neuroscience, mechanical and electrical en-
gineering and bio-medical signals.

In economics, wavelet coherence analysis is
widely used to investigate the dynamic relation-
ships between financial time series, such as stock
indices, exchange rates, and macroeconomic indi-
cators. By allowing researchers to examine correla-
tions at different time scales and periods, wavelet
coherence has enabled the identification of transient
co-movements and structural changes in markets
that may not be visible through traditional meth-
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Figure 4: Wavelet coherence analysis between selected signal pairs. High-coherence regions and phase

relationships are visible.

ods.

In neuroscience, wavelet coherence provides a
powerful tool for exploring the synchronization and
functional connectivity between different regions
of the brain. For example, it has been applied
to electroencephalogram (EEG) and magnetoen-
cephalogram (MEG) data to detect time-varying
patterns of coherence between neural signals, help-
ing to identify underlying mechanisms for cognitive
processes, brain disorders, and responses to stim-
uli. Coherence is also used to examine correla-
tions across physiological processes such as heart
rate and respiration, enabling detection of abnor-
mal patterns and assessment of disease impacts.

In all of these fields, coherence is studied by first
selecting signals of interest from a large pool. EEG
for research will regularly employ 128 - 512 nodes in
high-density mappings. The NYSE National plat-
form continuously updates the prices of over 8000
listed securities. Traditional coherence implemen-
tations would never be considered as methods of
extraction for the entire corpus. The Coherent Mul-
tiplex is capable of executing these computations at
scale, and is highly optimized for performance. The
model can be tuned to accommodate hardware, and
the most recent prototype is hosted smoothly on a
basic dual-core, 3.5 GB RAM cloud platform.

6. Future Work

The Multiplex architecture described in this
whitepaper can be summarized as heuristics for dis-
tinguishing signal pairings worthy of deeper analy-
sis at a given time. The "heuristics” and ”deeper
analysis” in this case refer specifically to FFT, co-
sine similarity, and wavelet coherence, thought this
can be appended or substituted depending on the
goal. If scale-independency is not necessary for the

object of study, the cross-wavelet transform can
substituted in for coherence. A different metric
could be used to determine the edge powers in the
graph, supposing the spectral content is not the ob-
ject of interest in the incoming signals.

Additional layers, both sequential and non
sequential will be appended to the multiplex.
Wayvelet coherence can be calculated alongside tra-
ditional metrics like macro trends for high-powered
edges in the graph, giving a more complete extrac-
tion of possible features. Additionally, subsequent
layers with trained convolution neural networks will
be added for automated analysis and description of
the coherence readings.
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